
Detect change 

Available with Image Analyst license. 

To find change between the two images from two different time periods, use the Detect Change 

Using Deep Learning tool. The tool will create a classified raster showing the changes. The 

image below shows three images: an image from time period one, an image from time period 

two, and the change between them. 

 

A typical change detection workflow using deep learning consists of three main steps: 

1. Create and export training samples. Create training samples using the Label Objects for 

Deep Learning pane, and use the Export Training Data For Deep Learning tool to 

convert the samples to deep learning training data. 

2. Train the deep learning model. Use the Train Deep Learning Model tool to train a model 

using the training samples you created in the previous step. 

3. Perform inferencing. Use the Detect Change Using Deep Learning tool. You will use the 

model you created in step 2. 

For more examples, supported metadata formats, and model type architecture documentation, 

see Deep learning model architectures. 

Create and export training samples 

Create a training schema and training samples, and export the training data. 

If you have existing training samples in a raster dataset or a feature class, you can use the Export 

Training Data For Deep Learning tool and proceed to the Train a deep learning model section 

below. 

1. Create a training schema. This schema will be used as the legend, so it needs to include 

all the classes in your deep learning workflow. 

https://prodev.arcgis.com/en/pro-app/3.2/tool-reference/image-analyst/detect-change-using-deep-learning.htm
https://prodev.arcgis.com/en/pro-app/3.2/tool-reference/image-analyst/detect-change-using-deep-learning.htm
https://prodev.arcgis.com/en/pro-app/3.2/help/analysis/image-analyst/label-objects-for-deep-learning.htm
https://prodev.arcgis.com/en/pro-app/3.2/help/analysis/image-analyst/label-objects-for-deep-learning.htm
https://prodev.arcgis.com/en/pro-app/3.2/tool-reference/image-analyst/export-training-data-for-deep-learning.htm
https://prodev.arcgis.com/en/pro-app/3.2/tool-reference/image-analyst/train-deep-learning-model.htm
https://prodev.arcgis.com/en/pro-app/3.2/tool-reference/image-analyst/detect-change-using-deep-learning.htm
https://prodev.arcgis.com/en/pro-app/3.2/help/analysis/image-analyst/overview-of-the-deep-learning-models.htm
https://prodev.arcgis.com/en/pro-app/3.2/tool-reference/image-analyst/export-training-data-for-deep-learning.htm
https://prodev.arcgis.com/en/pro-app/3.2/tool-reference/image-analyst/export-training-data-for-deep-learning.htm


1. Add the image to be used to generate the training samples to a map. 

2. In the Contents pane, select the image that you added. 

3. Click the Imagery tab. 

4. Click Classification Tools, and click Label Objects for Deep Learning. 

 

The Image Classification pane appears with a blank schema. 

5. In the Image Classification pane, right-click New Schema and click Edit 

Properties. 

 

6. Type in a name for the schema. 



 

7. Click Save. 

2. Add a new class to your schema. 

1. Right-click on the schema you created, and choose Add New Class. 

2. Type in a Name for your class. 

 

3. Provide a value for the class. 

The value cannot be 0. 

4. Optionally, choose a color for the class. 

5. Click OK. 

The class is added to the schema in the Image Classification pane. 

6. Optionally, repeat steps 2a through 2e to add more classes. 

3. Create training samples. These training samples show the areas of change that occurred 

between the two image, so we can train the deep learning model. 

1. In the Image Classification pane, select the class you want to create a training 

sample for. 



2. Choose a drawing tool, such as Polygon. 

3. Draw a polygon around the pixels that you want to represent the class. It is ok if 

your polygons overlap, however if you are not sure about an object, do not 

include it in your training samples. A new record is added in the Labeled 

Objects group of the Image Classification pane. 

 

4. Use steps 3a through 3c to create training samples for each class in your schema. 

It is recommended that you collect a statistically significant number of training 

samples to represent each class in your schema. 

4. When you finish creating training samples, click Save in the Image Classification pane. 

 



1. In the Save current training sample window, browse to the geodatabase. 

2. Provide a name for the feature class, and click Save. 

5. Close the Image Classification pane. 

6. Open the Export Training Data For Deep Learning tool so you can export your training 

samples as image chips. These image chips will be used to train the deep learning model. 

An image chip is a small image that contains one or more objects to be detected. 

1. Specify the Input Raster. Generally, this is the earliest image before any 

changes. 

2. Specify the Additional Input Raster. Generally, this is latest image after the 

changes. 

3. Specify the Input Feature Class Or Classified Raster Or Table. This is your 

labeled objects training samples file that you created. 

4. Select the Class Value Field. The specified label feature class for the changes. 

The feature class contains a field named ClassValue, which you will select. 

5. Specify the Output Folder. This is the path and name of the folder where the 

output image chips and metadata will be stored. 

6. Provide the Output Folder value. 

This is the path and name of the folder where the output image chips and 

metadata will be stored. 

7. Optionally, choose the Meta Data Format. The metadata formats that is best for 

change detection is Classified tiles. 

8. Click Run to export the training data. 

https://prodev.arcgis.com/en/pro-app/3.2/tool-reference/image-analyst/export-training-data-for-deep-learning.htm


 

Train a deep learning model 

The Train Deep Learning Model tool uses the labeled image chips to determine the combinations 

of pixels in each image to represent the object. You will use these training samples to train a 

deep learning model. In the tool, only the Input Training Data and Output Model parameters 

are required. 

Since your input training data is based on the Metadata Format, an appropriate Model 

Type will be assigned by default. The tool will also update the drop-down list of Model 

Type parameters with the appropriate model types that support the selected metadata format. 

The Batch Size, Model Arguments, and Backbone Model parameters are populated based on 

the Model Type. The output model will then be used to inference the change between the two 

images. 

https://prodev.arcgis.com/en/pro-app/3.2/tool-reference/image-analyst/train-deep-learning-model.htm


1. Open the Train Deep Learning Model tool. 

2. For the Input Training Data parameter, browse to and select the training data folder 

where the image chips are stored. 

3. For the Output Model parameter, provide the file path and name of the folder where the 

output model will be saved after training. 

4. Optionally, specify a value for the Max Epochs parameter. 

An epoch is a full cycle through the training dataset. During each epoch, the training 

dataset you stored in the image chips folder is passed forward and backward through the 

neural network one time. Generally, 20 to 50 epochs are used for initial review. The 

default value is 20. If the model can be further improved, you can retrain it using the 

same tool. 

5. Optionally, change the Model Type parameter in the drop-down list. The model type will 

determine the deep learning algorithm and neural network that you will use to train your 

model, such as the Change Detector architecture. For more information about models, 

see Deep Learning Models in ArcGIS . For documentation examples, supported 

metadata, and model architecture details, see Deep learning model architectures. 

6. Optionally, change the Model Arguments parameter value. 

The Model Arguments parameter is populated with information from the model 

definition. These arguments vary depending on the model architecture that was specified. 

A list of model arguments supported by the tool are available in the Model 

Arguments parameter. 

7. Optionally, set the Batch Size parameter value. 

This parameter determines the number of training samples that will be trained at a time. 

A batch size value can be determined by various factors such as number of image chips, 

GPU memory (if GPU is used), and learning rate, if a custom value is used. Typically, the 

default batch size produces good results. 

8. Optionally, provide the Learning Rate parameter value. 

If no value is provided, the optimal learning rate is extracted from the learning curve 

during the training process. 

9. Optionally, specify the Backbone Model parameter value. 

The default value is based on the model architecture. You can change the default 

backbone model using the drop-down list. 

10. Optionally, provide the Pre-trained Model parameter value. 

https://prodev.arcgis.com/en/pro-app/3.2/tool-reference/image-analyst/train-deep-learning-model.htm
https://prodev.arcgis.com/en/pro-app/3.2/help/analysis/image-analyst/deep-learning-models-in-arcgis.htm
https://prodev.arcgis.com/en/pro-app/3.2/help/analysis/image-analyst/overview-of-the-deep-learning-models.htm


A pretrained model with similar classes can be fine-tuned to fit the new model. The 

pretrained model must have been trained with the same model type and backbone model 

that will be used to train the new model. 

11. Optionally, change the Validation % parameter value. 

This is the percentage of training samples that will be used to validate the model. This 

value depends on various factors such as the number of training samples and the model 

architecture. Generally, with a small amount of training data, 10 percent to 20 percent is 

appropriate for validation. If there is a large amount of training data, such as several 

thousand samples, a lower percentage such as 2 percent to 5 percent of the data is 

appropriate for validation. The default value is 10. 

12. Optionally, check the Stop when model stops improving parameter. 

When checked, the model training stops when the model is no longer improving 

regardless of the Max Epochs value specified. The default is checked. 

13. Optionally, check the Freeze Model parameter. 

This parameter specifies whether the backbone layers in the pretrained model will be 

frozen, so that the weights and biases remain as originally designed. If you check this 

parameter, the backbone layers are frozen, and the predefined weights and biases are not 

altered in the Backbone Model parameter. If you uncheck this option, the backbone 

layers are not frozen, and the weights and biases of the Backbone Model parameter 

value can be altered to fit the training samples. This takes more time to process but 

typically produces better results. The default is checked. 

14. Click Run to start the training. 



 

Perform inferencing 

Inferencing is the process in which information learned during the deep learning training process 

is used to classify similar pixels and objects in the image. You will use the resulting deep 

learning model to perform change detection between two rasters images. Use the Detect Change 

Using Deep Learning tool since you are performing an change detection workflow. 

1. Open the Detect Change Using Deep Learning tool. 

2. For the From Raster parameter, browse and select your image from time period one—

the reference image. 

3. For the To Raster parameter, browse and select your image from time period two—the 

more current image. 

4. For the Output Classified Raster parameter, type the name for your output raster. The 

output classified raster will contain pixel values of 0 and 1, where 0 means NoChange, 

and 1 means Change. 

5. The Arguments parameter will be populated from the information from the Model 

Definition. These arguments will vary, depending on which model architecture is being 

used. In this example, the Change Detector model architecture is used so the following 

arguments are populated. You can accept the default values or edit them. 

1. padding—The number of pixels at the border of image tiles from which 

predictions are blended for adjacent tiles. Increase the value to smooth the output, 

which reduces artifacts. The maximum value of the padding can be half the tile 

size value. 

https://prodev.arcgis.com/en/pro-app/3.2/tool-reference/image-analyst/detect-change-using-deep-learning.htm
https://prodev.arcgis.com/en/pro-app/3.2/tool-reference/image-analyst/detect-change-using-deep-learning.htm
https://prodev.arcgis.com/en/pro-app/3.2/tool-reference/image-analyst/detect-change-using-deep-learning.htm


2. batch_size—The number of image tiles processed in each step of the model 

inference. This is dependant on the memory size of the graphics card. 

6. Click Run, to start the inferencing. 

 
 


