Skip navigation
All Places > Esri Technical Support > Blog > Authors Andrew_Johnson-esristaff
icon3.png3D data is becoming more ubiquitous nowadays and is especially promoted throughout the ArcGIS Platform. From web scenes, to CityEngine, to ArcGIS Pro, there are many different applications to import, manage, model, and share your 3D data. To get the output you are looking for, it may require numerous steps and tools. To navigate some of these steps and tools, here are some tips and tricks for working with 3D data in ArcGIS.

3D File Coordinate Systems

The majority of 3D formats do not store a coordinate system. GeoVRML and KML are the lone exceptions. KML will use a WGS 1984 coordinate system and meters for the unit of measurement. All other types (DAE, 3DS, OBJ) must be placed properly, otherwise they may import at "0,0" (off the coast of Africa).Trick #1

If you are using CityEngine, you can drag and drop your shape from the Navigator window into the scene (this workflow assumes a scene coordinate system is already set). When you export the shape to a multipatch feature class, the coordinate system is created with the data so you can bring it into another ArcGIS product.Import OverviewTrick #2

The same workflow can be accomplished in ArcGIS Pro. Create an empty multipatch feature class, navigate to Editor > Create Features > Select Model, and click the globe to place the model.SelectModel-300x125.pngTrick #3Use the Replace with Model tool (ArcScene or ArcGlobe) or the Replace with Multipatch tool (ArcGIS Pro).replace.pngArcGIS Desktop Replace with ModelArcGIS Pro Replace with MultipatchTrick #4

If you are using ArcScene, ArcGlobe, or ArcGIS Pro, manually place the model during an edit session using the Move, Rotate, or Scale operations.Move, rotate, or scale a featuremove.pngNote: There is known issue with the Import 3D files tool. The placement points parameter is not honored so as of ArcGIS 10.4.1 or ArcGIS Pro 1.3, this tool is not a viable option. This issue is planned to be fixed in a future release.


To import your 3D file with textures, you must ensure the texture resides next to the 3D file, either as an individual image file or a folder with the images.Note: Both the file and folder must have same name for the software to recognize the texture.Trick #1

Textures are only supported in file or enterprise geodatabases. Shapefile multipatches do not support textures, so make sure to import the multipatch into a geodatabase.


Make sure your 3D data has valid z-values. When sharing a web scene or importing the data into ArcGIS Pro, you want to make sure the elevation values are correct.Trick #1

If your multipatch is not at the correct elevation, you can use this trick. In ArcGIS Pro,Elevation-300x190.pngset the multipatch data "on the ground" and use the Layer 3D To Feature Class tool. The elevation values are then embedded into the multipatch.Trick #2

If you are using simple feature data (non-multipatch), use the Add Surface Information tool to add z-values to the data. Also, you can add z-values to an attribute table and with the Add Z Information tool, you can verify the values with the tool's output. If the data does not have valid elevation values, see the next tip.

Tools to Create 3D Data

Understand which tools can create 3D data: Layer 3D To Feature Class, Interpolate Shape, or Feature To 3D By Attribute.

Understanding 3D Data

Understand your 3D data. Extruded 2D polygons are not true 3D features, so you must export to multipatch to make the polygon a true 3D feature. Simple point, line, and polygon features can be considered 3D data if they have the correct z-values. 2D features can also be symbolized using 3D marker symbology.

Know the difference between a z-enabled feature class and a non-z-enabled feature class with a z field in the attribute table. Feature classes must be z-enabled to display at the correct elevation. You might see a z field in the attribute table, but that does not mean the geometry has the correct z-values. This can be verified by editing the vertices or adding z-values to an attribute table, as described above.

While this blog does not cover every facet of working with 3D data, it is my hope that this will provide some valuable information for working with 3D data on the ArcGIS Platform.
Andrew J. – Desktop Support Analyst
Get-map-data2.jpgThe CityEngine 2016.0 release was a ground breaking release. For those who are new to CityEngine and unfamiliar with the workflows, the new release cuts out a significant amount of time required to access and prepare data for use in CityEngine. For those who still want to use their own data…great!

You can find more information about preparing your data here.

For those who want a quick way of getting data and getting a CityEngine project up and running as quickly as possible, CityEngine 2016 is here to help with the Get map data wizard.

The Get map data wizard can be accessed by opening a scene in CityEngine and going to File > Get map data.  In the wizard, use the map to zoom to and select the area you want data from. The area selected can be from 500 m x 500 m to 100,000 m x 100,000 m. Three types of data can be grabbed by the wizard: Basemap, Esri World Elevation, and OpenStreetMap.

The basemap data is used as imagery (also referred to as texture) to be draped over the elevation layer. The basemap options allow you to select the basemap you want (Satellite, Streets, Topo, Dark Gray, or Light Gray), along with the image resolution. The resolution you select will determine the number of pixels the imagery has. The actual resolution of the imagery will depend on both the extent and resolution. For example, a 500 meter extent with a low resolution of 1024 pixels wide is less grainy than a 1,000 meter extent with the same resolution. As high resolution is not available across the globe, you may need to choose a lower resolution or larger area to get data. The Esri World Elevation will pull terrain data, or digital elevation model (DEM) data, from the Esri elevation service. OpenStreetMap data includes networks (streets) and polygons (building footprints).  OpenStreetMap is an open source, user-produced dataset, so coverage cannot be guaranteed, particularly for building footprints.

One thing to keep in mind when selecting data is that CityEngine is a memory intensive program and the larger the area and the higher the resolution, the more memory is required. If the computer has limited memory, you must consider that when selecting data to import.

With each new version of CityEngine, the software gets smarter, easier, and more groundbreaking. This blog only touched on the Get map data portion of the software, but there are more exciting features to check out, such as sharing scene packages, alembic modeling, and accessing data from ArcGIS Online. For a full list of new features, go here.
Rebecca R. & Andrew J. - Desktop Support

Filter Blog

By date: By tag: