Three Ways Distribution Circuits Will Disappoint You - Part 2

Blog Post created by PHohl-esristaff Employee on Jun 6, 2019

In electric utilities, we are really attached to our circuits. Get ready- those circuits are going to change, and as we progress, may become unrecognizable! Circuits are so embedded in our culture that a colleague once remarked that we are fixated on them!  He was right. We are fixated on circuits, and with good reason.

Electric utilities typically operate their distribution systems in pieces called circuits or feeders. We map by circuit, patrol facilities, trim trees, and report statistics by their circuit name or number.  As the utility industry changes, circuits will need to morph into more of an interconnected network. “Network” is a much better term than “circuits” to describe the future state. Is your utility preparing to successfully operate the network of the future?  

Part I of this series introduced some fundamental differences between traditional circuits and future networks.  This part II will examine the first difference – smaller pieces.

Smaller Pieces

In the future, electric networks will need to break down into smaller pieces for greater operating flexibility. Utilities established the sections of today’s circuits to reduce the customer impact of power outages, perform maintenance tasks, and supply large blocks of customer load. Utilities now need additional flexibility to accommodate different types of both customer usage and power generation. Distributed generation, including solar and wind, is steeply on the rise.  These variable resources bring constantly shifting power flows to circuits that were only designed for one-way power flow. Networks need smaller pieces with flexibility to handle variable power flows.

Electric vehicles can plug-in anywhere moving their electricity demand around like a big 2-story house on wheels! Yesterday’s large stable blocks of customer load are becoming less consistent and are now driving from one place to another.  Networks must be more configurable than circuits to meet the needs of tomorrow’s customers.

Smart-grid technologies too will drive networks to operate in smaller sections. Self-healing networks use smart switches to sense real-time conditions. In the blink of an eye, they communicate with other devices and compare observations. Together they determine when a power problem occurs and limit customer impact with instant automatic switching.  As utilities implement more self-healing capability, the pieces of the network will get smaller enhancing customer value by improving reliability.

It’s clear the operating pieces of the network will be smaller than those of a typical circuit today, delivering sorely needed operational flexibility.

Wrap up

New devices will split the coming network into smaller pieces. Because networks will be controlled with electronics and data, the backbone of this evolution will be a central data model of the entire system. This feature-rich model may be called a digital twin.  A fully functional digital twin, adequate to support disparate utility roles, is a big step from the straightforward facility mapping models of the past.

A digital twin should be sophisticated enough to represent each device accurately at its precise location. Device location on the network will guide its every operation.Smart utility operations begin and end with this location intelligence.

We are already seeing the writing on the wall as pilot projects adapt existing circuits to accommodate new unconventional devices. Common distribution circuits will evolve into a more robust network.  This flexible network must consist of smaller pieces, include numerous new complexities, and change quickly in response to system and customer needs.

The ArcGIS platform gives all stakeholders the ability to access and share critical network information. Advanced network information will have to become embedded in our “circuit culture” as it evolves.   The ArcGIS Utility Network Management extension is specifically designed to handle the smaller pieces and greater detail of the advanced electric networks now on the horizon.  

For more information on how the ArcGIS platform helps electric utilities manage advanced networks, visit our site.