
Arc Hydro in Action Webinar Series

- 2/25/21: Arc Hydro in ArcGIS Pro
- 3/11/21: Arc Hydro: Flooding & Forecasting
- 3/25/21: Arc Hydro: Hydrology & Hillslope
- 4/15/21: Arc Hydro: Support for Hydrologic and Hydraulic Modeling

х

÷

Announcements

Watch first three webinars at your convenience

- Arc Hydro in ArcGIS Pro
- Arc Hydro: Flooding & Forecasting
- Arc Hydro: Hydrology & Hillslope

• <u>Applied Meteorology Using ArcGIS (webinar series)</u>

Polling Questions

Did you attend or watch any of the first three webinars?

- Yes, Arc Hydro in ArcGIS Pro
- Yes, Arc Hydro: Flooding and Forecasting
- Yes, Arc Hydro: Hydrology & Hillslope
- No

Presenters:

Pete Singhofen, PE President Streamline Technologies

Warren McKinnie

Senior Water Resources Engineer

> Streamline Technologies

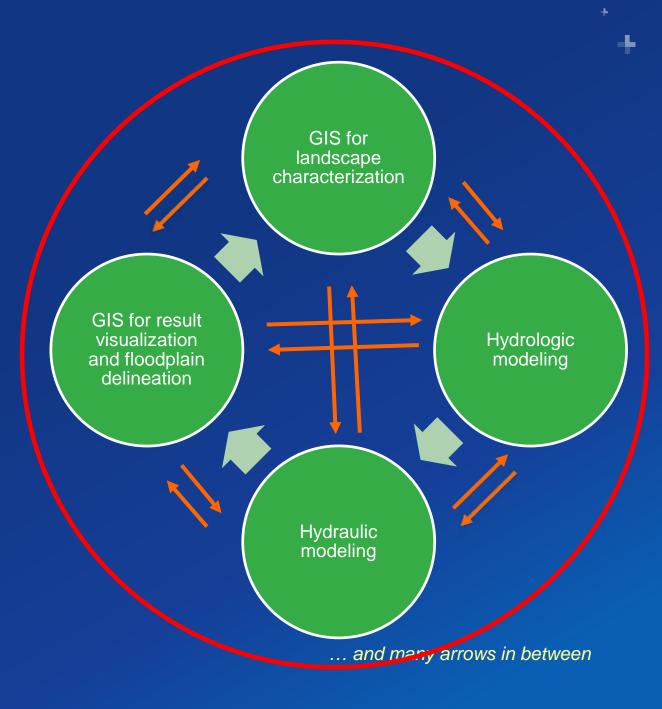
Dean Djokic, PhD

Water Resources Practice Manager

Esri

Arc Hydro: Support for Hydrologic and Hydraulic Modeling

2021 "Arc Hydro in Action" Webinar Series


Webinar 4 Topics

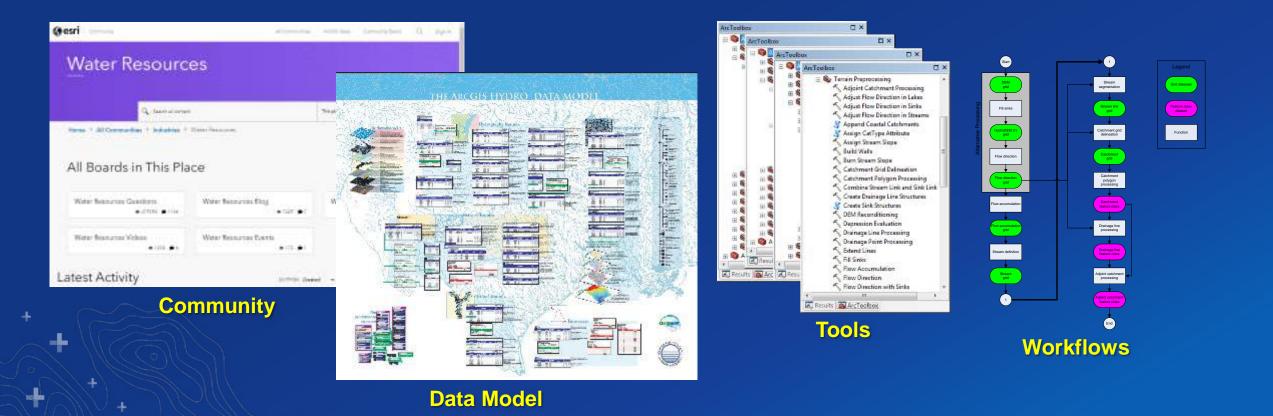
- Review of the series.
 - Arc Hydro Groundwater
- Fundamentals of model integration
- H&H modeling through use cases
- Final thoughts
- Questions

GIS for Hydro Modeling "Cycle"

- GIS is used for landscape characterization and model parametrization.
- Hydrology and Hydraulics (H&H) is used for determination of flows, depths and velocities.
- GIS is used for result postprocessing and visualization.
- GIS and H&H modeling are closely connected as one impacts the other

Model Integration Use Cases

- Tight coupling
 - StreamStats (tight, but not so tight)
 - PEI Culvert Calculator
- Groundwater MODFLOW
- Lose coupling
 - HEC-GeoHMS, HEC-GeoRAS
 - ICPR4



Review of Series

Arc Hydro: Vision

"Provide practical GIS framework for development of integrated analytical systems for water resources market."

Arc Hydro Tools Summary Functionality Grouping

Foundation

Terrain preprocessing

- ID mgmt.

Administration

- QA

- Configuration

- Streams

- Sinks

- Flow patterns

Watershed delineation

- Watershed

- Sub-watershed
- Batch processing

Floodplain delineation

- Streams
- Lakes

- Forecast

Watershed characterization -L.

- Pollutant loads

- Impervious areas
- Runoff characteristics

Stormwater

- Built infrastructure
- Surface drainage
- Connectivity

Living Atlas

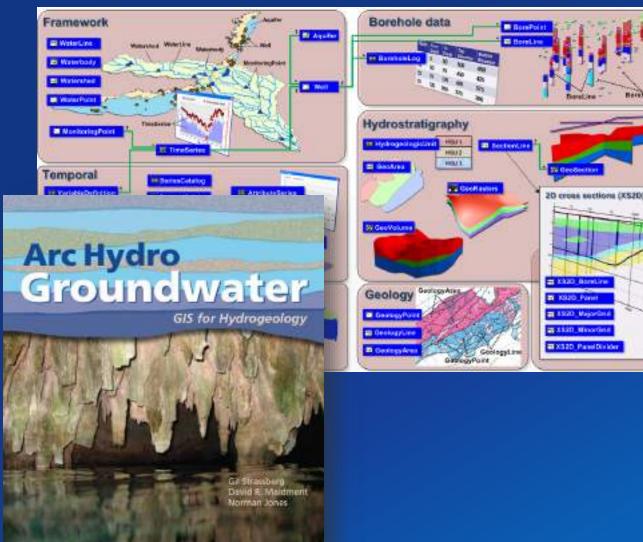
- **Specific** - Watershed delineation implementations
 - Downstream tracing
 - Floodplain delineation

Customer Specific

- Nebraska DNR
- USFS GRAIP-Lite
- Illinois DNR

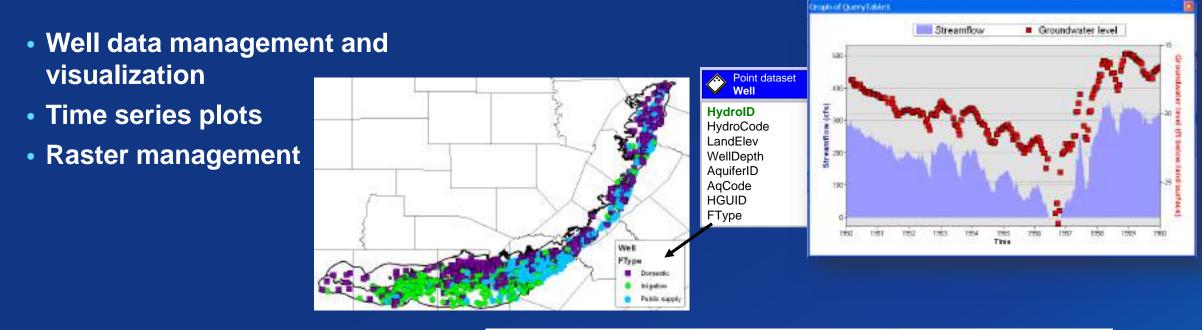
÷

integration


- HEC-HMS - HEC-RAS

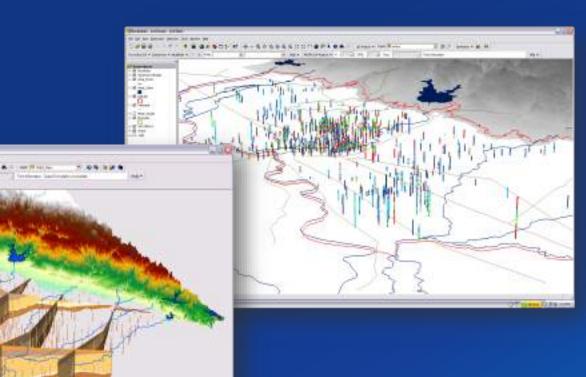
Scientific model

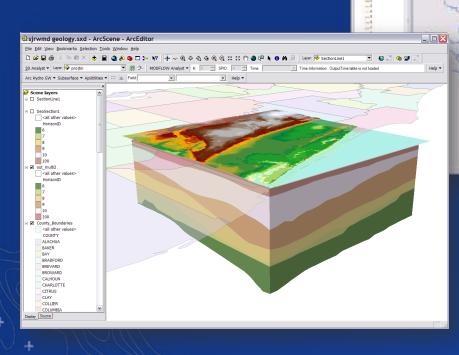
- ICPR


Arc Hydro Groundwater

- Project launched in 2004:
 - Dr. David Maidment @ Texas
 - Dr. Norm Jones @ BYU
 - Dr. Gil Strassberg @ Aquaveo
- 2006 first draft (Gil's Ph.D. work)
- 2007 Aquaveo Esri agreement on tool development
- 2009 AHGW tools released
- 2011 book published

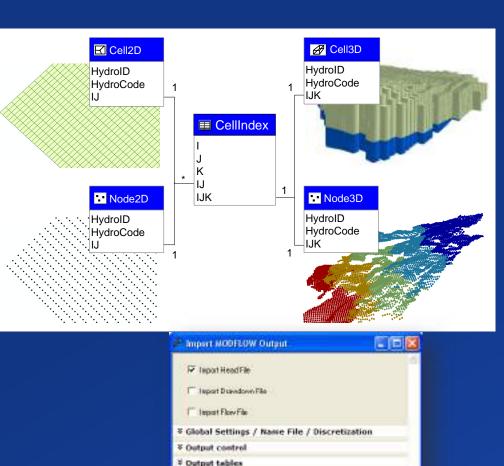
Arc Hydro Groundwater – Groundwater Analyst




Arc Hydro Groundwater – Subsurface Analyst

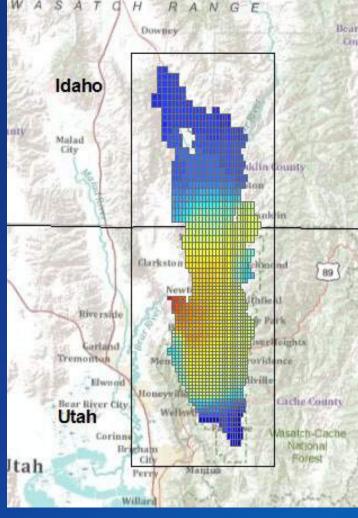
THE ADDRESS AND ADDRESS TO ADDRESS TO ADDRESS ADDRESS

- Borehole management
- Borehole visualization
- Cross-sections
- GeoVolumes


AQUAVEO

Arc Hydro Groundwater – MODFLOW Analyst

• MODFLOW


- Develop
- Import
- Visualize
- Run

OE

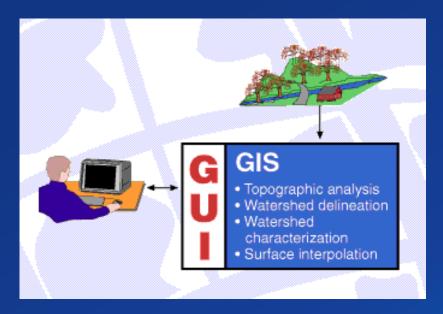
Centel

Environments... Show help >>

Quotes of the day/month/year/...

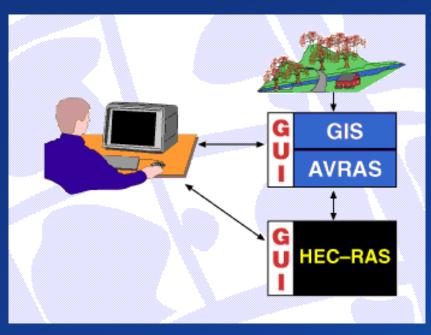
- "All models are wrong, but some are useful" (George Box ~1976)
- "Perfect is the enemy of the good" (Voltaire ~1770)
- "A fool with a tool is still a fool"
 - (reported by Ken Lanfear, USGS ret.)

Principles of Model Integration


Model Integration Components

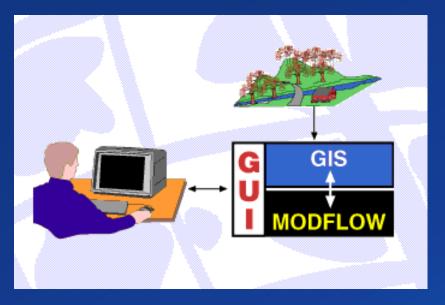
- Data exchange
 - How will the applications/models share the data
- User interface
 - How will the applications manage user interaction
- Model/application control
 - How will the applications control (each other's) execution
- SW/HW infrastructure
 - What infrastructure is available to support the integration process

Types of Model Integration - Modeling Support


- Standard GIS tools are used to derive data and information used in water resources modeling (e.g. watershed boundaries, watershed characteristics, etc.)
- Data exploration and processing (e.g. develop layer of curve numbers based on land use and soil type layers)

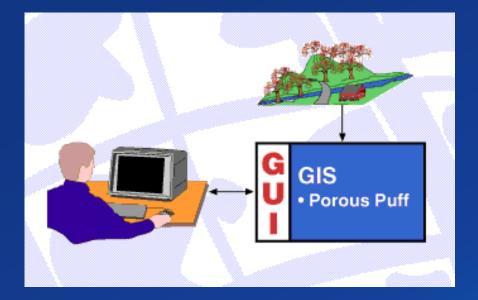
Types of Model Integration - Linked

Loosely Coupled


- GIS is linked to external models
- GIS preprocess and post-process model data for cost-efficient and visually effective results
- GIS and models maintain their distinctive user interfaces

Types of Model Integration - Integrated

Tightly Coupled

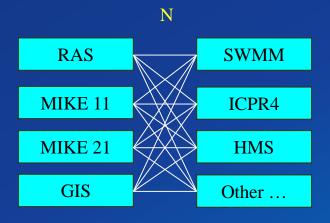

- GIS is integrated with external models
- GIS preprocess and post-process model data for cost-efficient and visually effective results
- GIS and models share the same user interface

Types of Model Integration - Embedded

 Model functionality is implemented as a core GIS tool (e.g. Porous Puff dispersion model has been implemented as a Spatial Analyst function)

Integration Issues

• Models:


- Data providers
- Data consumers
- Often both
- Unspecified at the beginning of the integration exercise
- Proprietary

-Data

-Control

 Independence from integration platform

- Development out of "control"
- Maintenance "curse"
 - Long term cost of ownership
- Complexity increase (multiplicative) as you add more models

N * (N - 1) Bi-directional

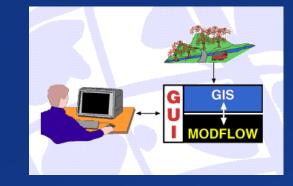
Model Integration Approach

- Model integration "platforms".
 - Stella
 - GoldSim
 - Vensim
 - MATLAB
 - ...
- Esri universe
 - Model Builder
 - Data Interoperability / FME
- Custom solutions

Model Integration Approach

- Whatever works for particular situation different conditions even for the same integration "problem" can result in a different integration method(s)
 - Tight or loose coupling
 - Technical issues
 - Legal issues
 - Access to the underlying model structure or not (NSS vs. Excel)
- Check out the existence of 3rd party solutions
 - Almost always cheaper to buy a solution than to develop one (except for simple tasks)
- Python and ArcPy as framework for developing complex integrated systems

StreamStats


Regression Equations – USGS StreamStats

- Used to estimate streamflow statistics, both high and low flows, for ungaged sites (in uncontrolled flow environment)
- Relate streamflow statistics to measured basin characteristics
- Developed by all 48 USGS districts on a state-by-state basis through the cooperative program (usually sponsored by DOT)
- Regression equations take the form:

 $Q_{100} = 0.471 * A^{0.715} * E^{0.827} * SH^{0.472}$

Regression equation for indicated O _{ACP}	MEV (log units)	AVP (log units)	SEM (percent)	SEP (percent)	Pseudo-R ² (percent)
A69		on 1_2; n = 59	4	4	
$Q_{\mu\nu} = 0.000815 A^{0.000} P^{2.00}$	0.065	0.069	64.3	66.7	91.6
$Q_{s1} = 0.00141 \ A^{3.901} P^{2.31}$	0.063	0.067	63.0	65.3	91.6
$Q_{in} = 0.00238 A^{4.000} P^{2.34}$	0.063	0.066	62.8	65.0	91.4
$Q_{ij} = 0.00294 A^{0.923} P^{0.12}$	0.062	0.066	62.3	64.5	91.4
$Q_{20} = 0.00616 A^{4.300} P^{2.21}$	0.065	0.069	64.3	66.7	90.4
$Q_{10} = 0.00962 A^{kas2} P^{218}$	0.070	0.074	66.8	69.4	89.4
$Q_s = 0.0148 A^{0.001} P^{0.10}$	0.075	0.080	70.0	72.9	88.2
$Q_2 = 0.0191 \mathcal{A}^{table} P^{t+2}$	0.080	0.086	72.7	75.8	87.2
$Q_1 = 0.0239 A^{0.001} P^{0.11}$	0.086	0.093	76.2	79.7	85.9
$Q_{a1} = 0.0288 A^{exts} P^{2.00}$	0.093	0.100	79.7	83.5	84.7
$Q_{a1} = 0.0355 A^{0.00} P^{0.00}$	0.101	0.108	84.0	88.2	83.1
- A-	Rec	gion 3; n = 13			
$Q_{ac} = 8.15 \ A^{0.00}$	0.135	0.158	102	114	78.3
$Q_{st} = 11.7 \ A^{0.927}$	0.117	0.137	92.6	103	80.3
$Q_{m} = 17.2 A^{4.7m}$	0.097	0.114	82.2	91.2	82.7
$Q_{11} = 20.1 d^{0.761}$	0.090	0.106	78.2	86.7	83.6
$Q_{m} = 35.6 A^{a \pi \pi}$	0.064	0.076	63.5	70.4	87.5
$Q_{10} = 51.8.4^{8.766}$	0.048	0.059	54.0	60.4	90.1
$Q_q = 75.7 A^{0.764}$	0.032	0.040	42.7	48.8	93.2
$Q_2 = 95.9 \ A^{0.3nl}$	0.022	0.030	35.2	41.5	95.1
$Q_i = 117 A^{0.06}$	0.014	0.021	27.8	34.5	96.8
$Q_{a1} = 140 A^{a3a2}$	0.009	0.015	21.5	29.1	98.0
$Q_{a\pm} = 171 A^{0.0ai}$	0.003	0.010	13.0	22.8	99.2
	Reg	gion 4; n ≃ 28			
$Q_{\rm m} = 0.000592 \ A^{0.001} (F/100 + 1)^{1.02} P^{2.00}$	0.059	0.069	60.8	66.4	92.1
$Q_{uv} = 0.00126 A^{uve_2} (F/100 + 1)^{v=2} P^{2.00}$	0.051	0.060	55,9	61.0	92.8
$Q_m = 0.00272 A^{nm2} (F/100 + 1)^{+10} P^{211}$	0.044	0.051	51.2	55.8	93.5
$Q_{11} = 0.00370 A^{1.007} (F/100 + 1)^{0.07} P^{0.02}$	0.040	0.047	48.5	52.9	94.0
$Q_{\pm} = 0.0123 A^{0.99} (F/100 + 1)^{2.0} P^{2.0}$	0.030	0.035	41.2	45.2	95.2
$Q_{\rm m} = 0.0279 \ A^{\rm even} (F/100 + 1)^{2.0} P^{2.0}$	0.025	0.031	38.0	42.0	95.6
$Q_q = 0.0773 A^{q.nm} (F/100 + 1)^{\pm m} P^{\pm nc}$	0.022	0.027	34.8	38.9	96.1
$Q_z = 0.149 \mathcal{A}^{0.00} (F/100 + 1)^{\pm zz} P^{1.0z}$	0.020	0.025	33.1	37.5	96.3
$Q_z = 0.292 A^{0.001} (F/100 + 1)^{2.92} P^{1.00}$	0.019	0.025	32.7	37.3	96.3
$Q_{as} = 0.534 A^{ants} (F/100 + 1)^{3.00} P^{1.00}$	0.019	0.024	.32.3	37.2	96.3
$Q_{sz} = 1.09 A^{com} (F/100 + 1)^{3.0} P^{1.00}$	0.019	0.026	32.9	38.2	96.0

System/Integration Architecture

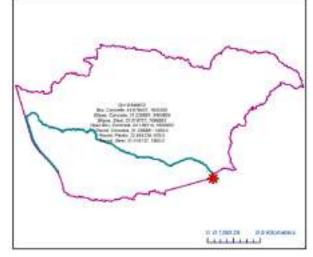
- Integrated / tight coupling.
 - GIS used for watershed delineation and characteristics extraction.
 - National Stream Statistics (NSS) application used for regression calculations.
- While GIS and regression engine are separated and run independently, the (web) user interface "hides" that and a single front end is presented to the user.
- But is a black-box no ability to control model parameter extraction methodology, data, or equations.

PEI Culvert Calculator

Prince Edward Island Culvert Calculator Project Overview

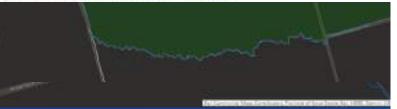
- User: PEI Department of Communities, Land and Environment
- Goal: Streamline road maintenance during short construction season. Automate small culvert repair and installation.
- Implementation components:
 - Data:
 - Topography/hydrography:
 - Local DEM and hydrography (DEM at 1m).
 - Hydrology/hydraulics/design:
 - Rational method including climate change precipitation adaptation (Q
 - Manning's equation (open channel) for sizing.
 - Road construction manual (DOT) for culvert design.
 - Geoprocessing service for watershed delineation, characterization, and culvert sizing.
 - Web application (simple WAB app) for end user interaction.

1 B


PEI Culvert Calculator Demo

Prince Edward Island Culvert Calculator Demo

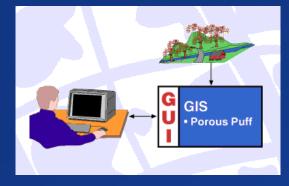
Culvert Calculation Results


Date and Time Prepared: 3/2/2021 2:11:55 PM Provincial Property Number: xxx Community: POPLAR POINT Location: Latitude: 46:287136 Longittude: -62:476624

Catchment Data:

Land catchment area: A = 2.553561 sqkm Distance from most remote point to structure: Dist = 3308.22 m Elevation difference from most remote point to structure: Dh = 27.19 m Time of concentration (Kirplich formula): tc = 57.088167 min Runoff coefficient: C = 0.5 Intensity (from climate change adjusted IDF): i(100) = 52.67 mm/hr Weather Station utilized: Charlottetown

Calculated Flow Rate (Rational formula): Q = 18.697 m3/s


Structure Options*:

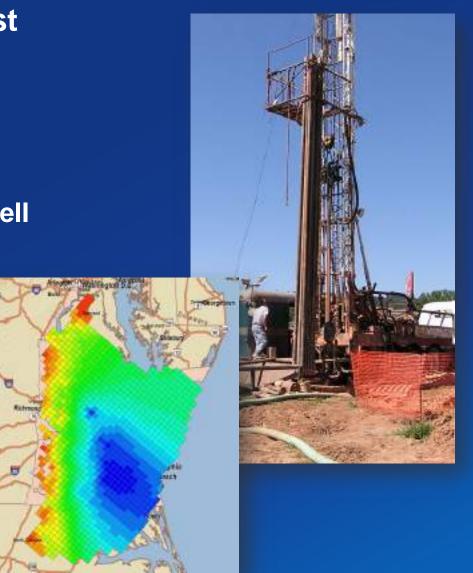
Round Culvert Corrugated metal: minimum 1500.0 mm diameter Concrete: minimum 1050.0 mm diameter Plastic: minimum 975.0 mm diameter Box Culvert (closed bottom) Concrete: minimum 1620000 mm2 cross-sectional area Box Culvert (open bottom) Concrete: minimum 1620000 mm2 cross-sectional area Ellipse Corrugated Metal: minimum 7068583 mm2 cross-sectional area Concrete: minimum 3463605 mm2 cross-sectional area

* Structure must be installed at a slope of 0.5% or less.

÷.

System/Integration Architecture

- Embedded.
- GIS processing, hydrologic model, and engineering design are built into a single application (geoprocessing service).
- The (web) user interface provides a single front end for the user.
- But is a black-box no ability to control model parameter extraction methodology, data, or equations.

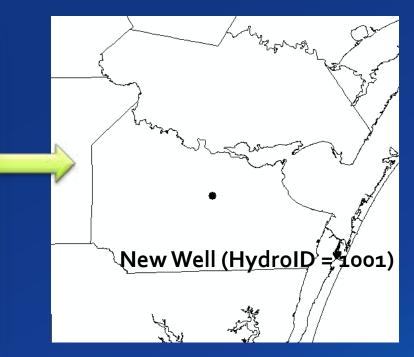

structure	Options*:
Round Culv	en
Corrugate	d metal. minimum 1500.0 mm diameter
Concrete:	minimum 1050.0 mm diameter
Plastic: m	inimum 975.0 mm diameter
Box Culvert	(closed bottom)
Concrete:	minimum 1620000 mm2 cross-sectional area
Box Culvert	(open bottom)
Concrete;	minimum 1620000 mm2 cross-sectional area
Ellipse	
Corrugate	d Metal: minimum 7068583 mm2 cross-sectional area
Concrete:	minimum 3463605 mm2 cross-sectional area
	minimum 3463605 mm2 cross-sectional area nust be installed at a slope of 0.5% or less.

Groundwater Integration

Automated Well Permitting – MODFLOW Analyst

- Calibrated regional model is imported to ArcGIS as a "baseline" model.
- Candidate wells are added to baseline model using well package.
- Impact of new well is analyzed using MODFLOW
- Results are imported into ArcGIS for presentation

Workflow


- Create new well
- Update well table
- Export well package file
- Run MODFLOW
- Import solution
- Build drawdown map layer
- Generate final map products

• Well Permitting - Create Drawdown Map - V	DEQ		
Model Edit Wew Window Help			
¢1			

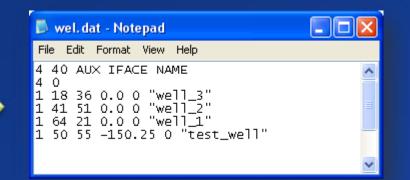
Step 1 – Create New Well

Input WellFeatures				
Wel				- I 🐼
Punping Rate (Q) Field				
Q				
Screen Top Pield				- and
ScreenTop				
Screen Botton Reld				
ScreenBot				2
Well Coordinates X Coordinate		V Coordinate		
	100			150
Puniping Rate (aptional)				
Story Martin and				-250
Soreen Top (optional)				100
Screen Bottom (optional)				100
				50
				55
	-			-
	OK	Cancel	Environments	Show Help >

Step 2 – Create New Instances in WEL Table

CellID represents MODFLOW i, j, k values

Ⅲ /	Attributes of WEL							
	Object ID *	CellID	SPID	Q	Qfact	IFACE	SourceID	
	1	5024	1	-2830	<null></null>	0	999	
	2	955	1	-680	<null></null>	0	1000	
Þ	3	1030	1	-150.2	<null></null>	0	1001	
	Record: II I	3 🕨 🔰	Show	a All	5elected	Records (1	out of 3 Selected)	


SourceID is the HydroID of the well feature

Step 3 – Export the New Well Data to MODFLOW Text File

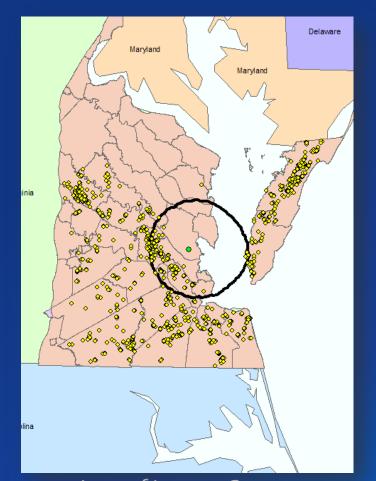
P Expert Package WH	
Input WEL Table	<u></u>
MEL	- 6
Key Value Field	1002
Q	1
Cutput WEL Package file	
Chroditow/wel.dat WEL Package Table Auxiliary Fields (optional)	<u></u>
ODD DTX SPID Q Qfat: DIFACE SourceID	
Select Al Unselect Al	Addred
≈ Comments	
* Discretization (DIS)	
* Output Control	
¥ Parameters	
OK Cancel Environment	s Show Help >>

Step 4 – Run MODFLOW

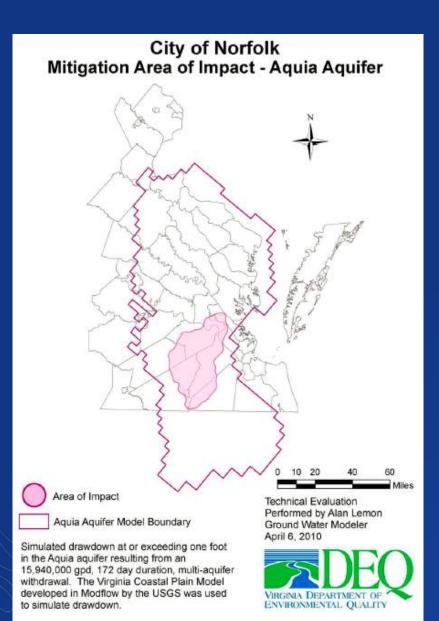
P Run MODFLOW	
MODFLOW Executable	<u> </u>
C:\Program Files\Aquaveo\Arc Hydro Groundwater Toolkit\MF2K\mf2k_ahgw.exe	- 2
MODFLOW Project Name File	
C:\Gil\Aquaveo\tools\Testing\WellPermitting\modfmap_MODFLOW\modfmap.mfn	- B
	~
OK Cancel Environments S	5how Help >>

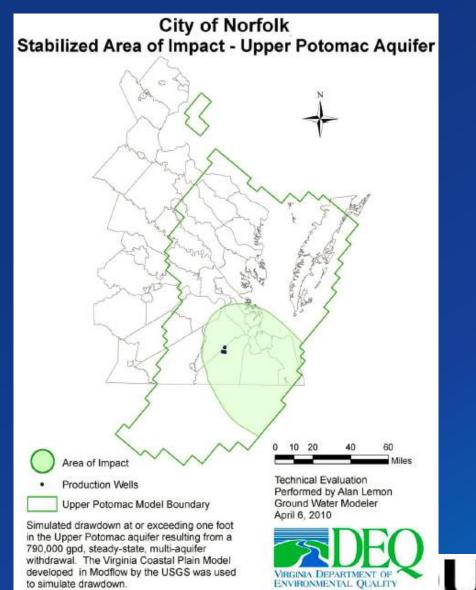
Step 5 – Read-in the Results

Import Simulated Equivalents	
MDDFLOW Simulated Equivalents File (
Cil(GI)Aquaveo(tools\Testing)WelPernitting(modfmap_MODELOW(modfmapos	1
Input FLOB Table	
FLOB	- 🗃
Input HOBTimes Table	and the second
C; \Gi\Aqueveo\tools\Testing\UnportSimulatedEquivalents\original_model\original_model.mdb\HCBTimes	- 🛎
OK Cancel Environments	Show Help >>

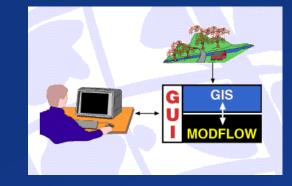


GIS Products

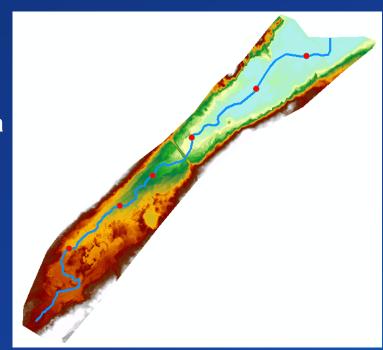

Area of Impact Cells



Area of Impact Contour



Report


System/Integration Architecture

- Integrated / tight coupling.
 - GIS used for well placement and well characteristics extraction.
 - MODFLOW is used for groundwater modeling.
- While GIS and MODFLOW engine are separated and run independently, the model builder user interface "hides" that and a single GIS front end is presented to the user.
- MODFLOW Analyst exposes many of MODFLOW capabilities through GIS interface so you have good control over MODFLOW and capacity to tweak it without having to be a MODFLOW expert.

Floodplain Delineation Solutions Matrix

- Different levels of complexity are possible/needed to determine flood extents
- Simple, based on terrain and observations only:
 - "Flooding out" based on DEM, stream centerline, and point data
 - HAND approach (constant depth of flooding per reach)
- Complex, based on hydraulic modeling (using external hydraulic models):
 - **1D**
 - 2D
 - Full or simplified equations (Navier-Stokes / Saint-Venant / ...)

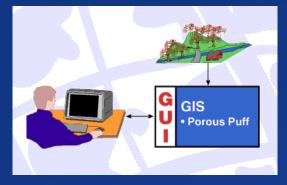
Previous Polling Questions Results

Do you use hydraulic models for floodplain delineation?

- Yes = 47%
- No = 53%

If you are doing hydraulic modeling, what software do you use (81 - multi):

- DHI	= 9%
- HEC-RAS	= 65%
- ICPR4	= 6%
- INNOVYZE	= 6%
- SWMM	= 15%
- Other	= 31%


HEC-GeoHMS and HEC-GeoRAS

HEC-GeoHMS and HEC-GeoRAS Status

- Products:
 - HEC-GeoHMS GIS companion product to HEC-HMS (pre-processing)
 - HEC-GeoRAS GIS companion product to HEC-RAS (pre- and post-processing)
- Development
 - ArcGIS version (development by ESRI for HEC). Final HEC releases with version of ArcMap 10.2
 - No new functionality in many years
- Maintenance
 - Ongoing code maintenance by Arc Hydro team (through 10.8)
 - Support through Water Resources Community pages
- Downloads
 - Through Arc Hydro ftp site
- No plans for porting to Pro in their current forms

Geo Capabilities in HEC-HMS and HEC-RAS

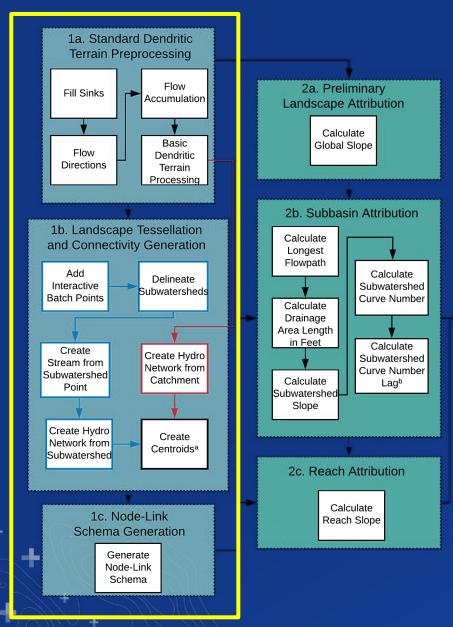
- HEC adding capabilities to use spatial data in their native products
- Integrated into HEC apps
 - HEC-HMS (since v4.4, 2020)
 - Similar to terrain preprocessing capabilities from HEC-GeoHMS
 - GIS menu
 - HEC-RAS RAS Mapper
 - Extensive additions for 2D modeling support

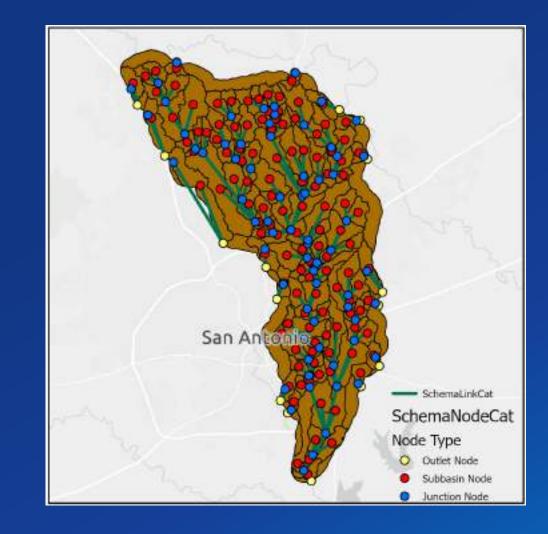
HEC-HMS Support in Arc Hydro for Pro

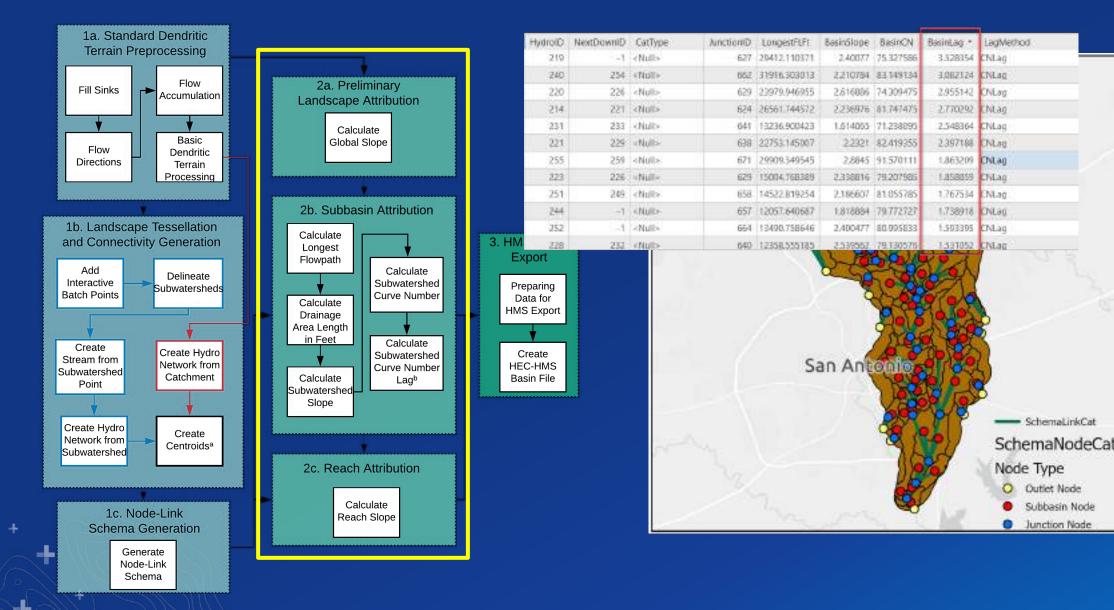
3. HMS Model

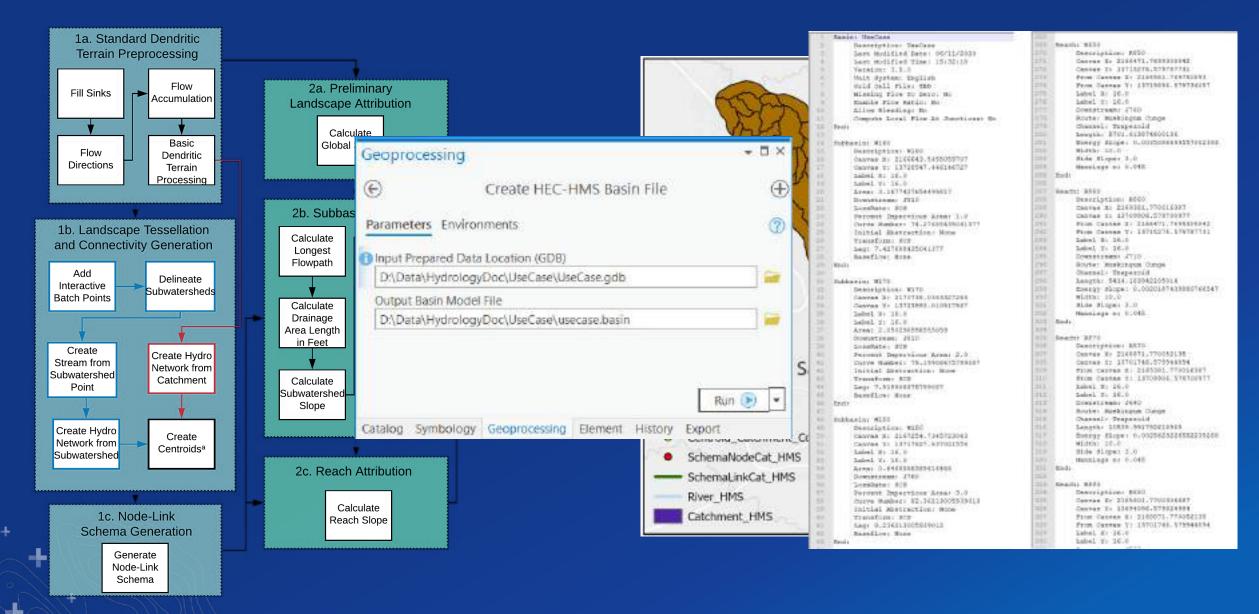
Export

Preparing

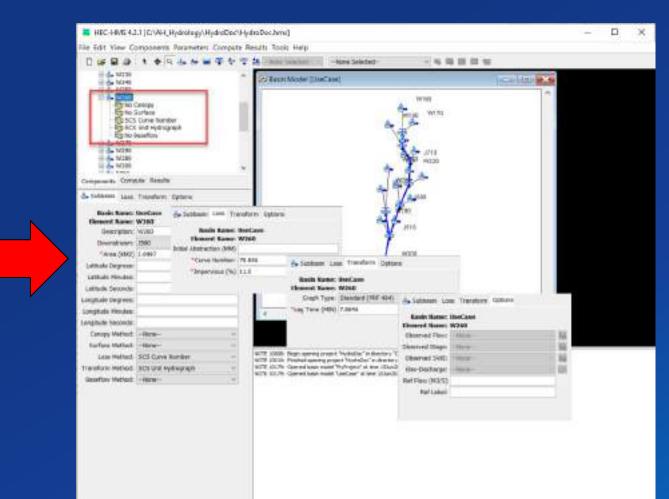

Data for


HMS Export


Create


HEC-HMS

Basin File

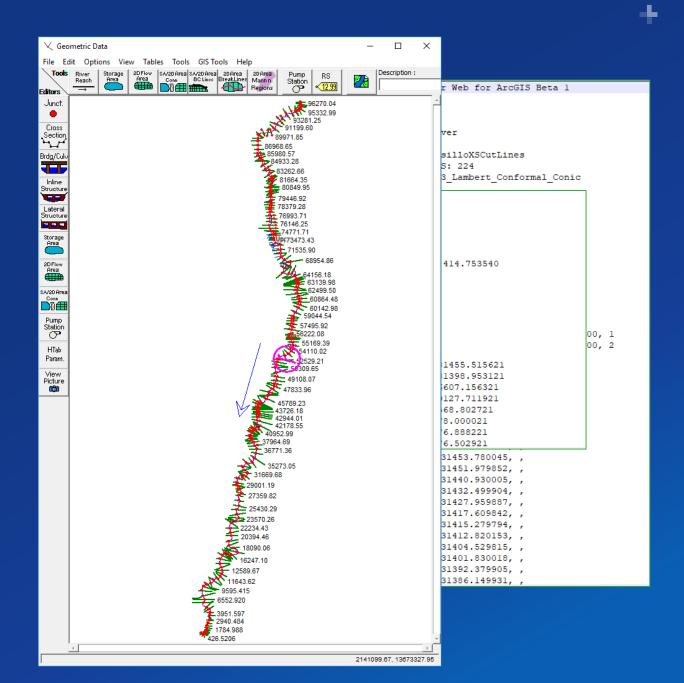


*

System/Integration Architecture

G GIS AVRAS G HEC-RAS I HEC-RAS

- Loose coupling.
- Only one specific HMS tool, the rest are standard Arc Hydro tools.
 - Python export code (to ASCII file). This is different from HEC-GeoHMS that used XML and XSLT export methodology.
- You can use the same tools to support any other node-link hydrologic model.
 - Modify python code to export to a different model-specific output format.
- Fully compliant with geoprocessing infrastructure so you can build automation around your specific modeling workflows (Model Builder, Python, Notebooks).


HEC-RAS Support in Arc Hydro for Pro

HEC-RAS Preprocessing

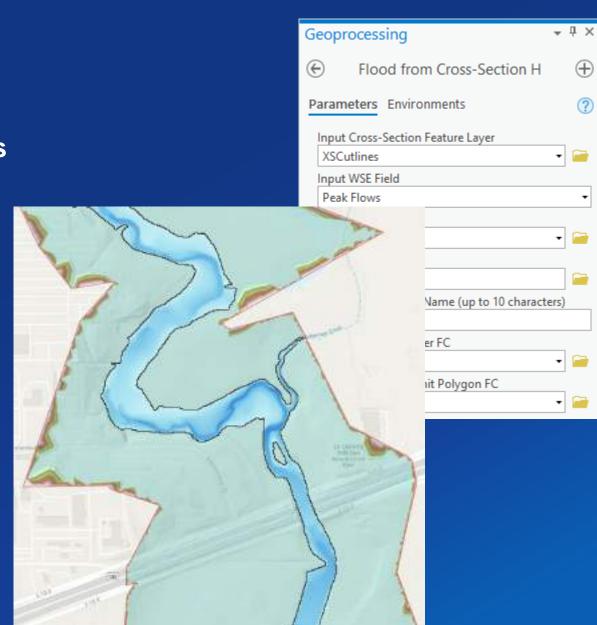
• Export from geodatabase into sdf file

 Geodatabase to SDF Parameters Environments Input Attributed 2D Cross Section Feature Class RosilloXSCutLines Input Attributed 3D Cross Section Feature Class RosilloXSCutLines3D Input Attributed River Feature Class RosilloRiver Input DEM RosilloDEM10ft.tif Output SDF File I_HHModeling\Demos\Ex9\ex9exporttoras.sdf 	Geoprocessing			
Input Attributed 2D Cross Section Feature Class RosilloXSCutLines Input Attributed 3D Cross Section Feature Class RosilloXSCutLines3D Input Attributed River Feature Class RosilloRiver Input DEM RosilloDEM10ft.tif Output SDF File	(c) Geodatabase	e to SDF 🕀		
RosilloXSCutLines Input Attributed 3D Cross Section Feature Class RosilloXSCutLines3D Input Attributed River Feature Class RosilloRiver Input DEM RosilloDEM10ft.tif Output SDF File 	Parameters Environments	?		
RosilloXSCutLines3D		ction Feature Class -		
RosilloRiver Input DEM RosilloDEM10ft.tif Output SDF File	-			
RosilloDEM10ft.tif 🔹 🧁 Output SDF File		e Class 🔹 🧰		
		•		
		ex9exporttoras.sdf 🦳		

HEC-RAS Postprocessing

- Import from sdf file into geodatabase
 - XSCutlines
 - With WSE fields
 - River2D

....


BoundingPolygons

	XSCutl	ines ×						
Fi	Field: 📰 Add 📰 Calculate 🛛 Selection: 🖫 Select By Attributes 🚭 Zoom To 📑 Switch 📃 Clear 💂							
	OID *	Shape *	RiverCode	ReachCode	ProfileM	Peak Flows	LeftBank	RightBank
	1	Polyline	Rosillo	Upper	96270.04	755.785	0.465	0.5595
	2	Polyline	Rosillo	Upper	95997.31	752.4846	0.528	0.634
	3	Polyline	Rosillo	Upper	95759.74	751.8813	0.479	0.6
	4	Polyline	Rosillo	Upper	95640.02	750.5233	0.45799	0.6
	5	Polyline	Rosillo	Upper	95332.99	746.1621	0.545	0.72801
	6	Polyline	Rosillo	Upper	95029.4	744.3393	0.498	0.622

Geoprocessing • 4 ×	
Parameters Environments (?)	
Input SDF	
C:\CurrWork\Presentations\2021\ArcHydroW	
Spatial Reference	
NAD_1983_Lambert_Conformal_Conic	
Target Folder	
Ex11 A B RasResults	
Geodatabase Name 😥 ActiveWaterSurfaceExten	ts
SdfToRAS3.gdb 😳 BankPoints	
BoundingPolygons	
: Ice	
Er River2D	
ShearStress	
h 🔄 Clear 🙀 🖾 StorageAreas	
nk RightBank 😳 StreamPower	
165 0.5595 🖸 Velocities	
0.634 WaterSurfaceExtents	
179 0.6 In XSCutlines	
799 0.6 TXSCutlines3D	
0.72801	
198 0.622	

HEC-RAS Postprocessing

- Floodplain delineation from cross-sections
 - Using DEM as terrain
 - Limit floodplain to directly connected areas
 - Limit floodplain to limiting polygon
- Results:
 - Geodatabase:
 - Flood polygon extents
 - Surfaces:
 - Depth
 - Water surface elevation

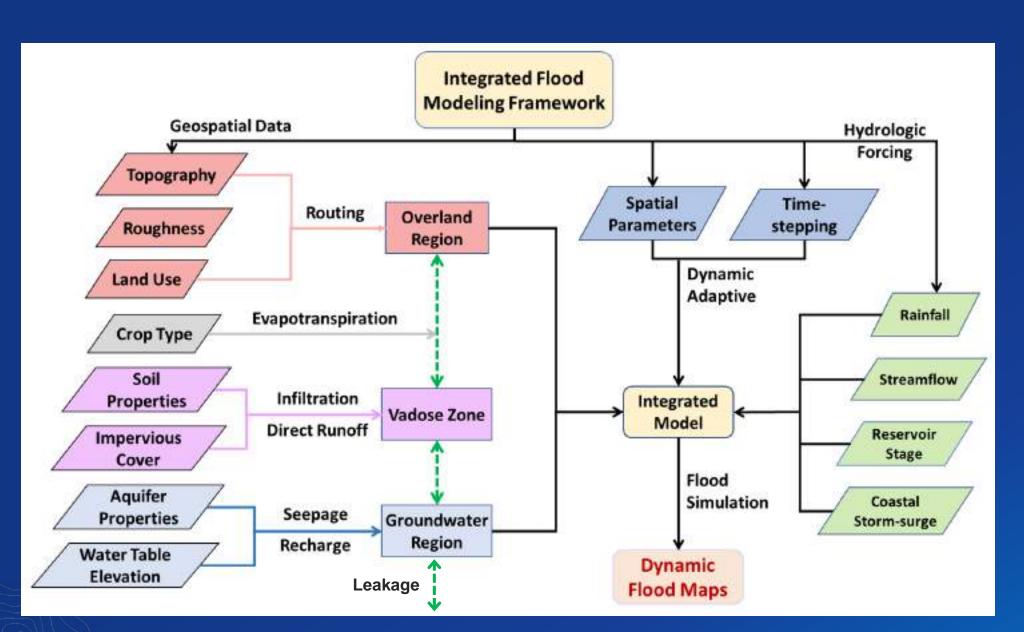
System/Integration Architecture

G GIS AVRAS HEC-RAS

- Loose coupling.
- Two specific RAS tools, the rest are standard Arc Hydro tools.
 - Python export code (to ASCII file). This is different from HEC-GeoRAS that used XML and XSLT export methodology.
- You can use the same tools to support any other 1D hydraulic model.
 - Modify python code to export to a different model-specific output format.
- Fully compliant with geoprocessing infrastructure so you can build automation around your specific modeling workflows (Model Builder, Python, Notebooks).
- Adding few more functions on pre and post-processing.

Polling question

- Is integrated hydrologic and hydraulic modeling important for your work?
 - Yes
 - No
- Are you familiar with ICPR 4? (Interconnected Channel and Pond Routing Model)
 - Yes, I've used it
 - Yes, I've heard about it
 - No, I'm not familiar with ICPR 4
- Do you use real-time flow forecasting?
 - Yes
 - No
 - I know about flow forecasting but haven't used it

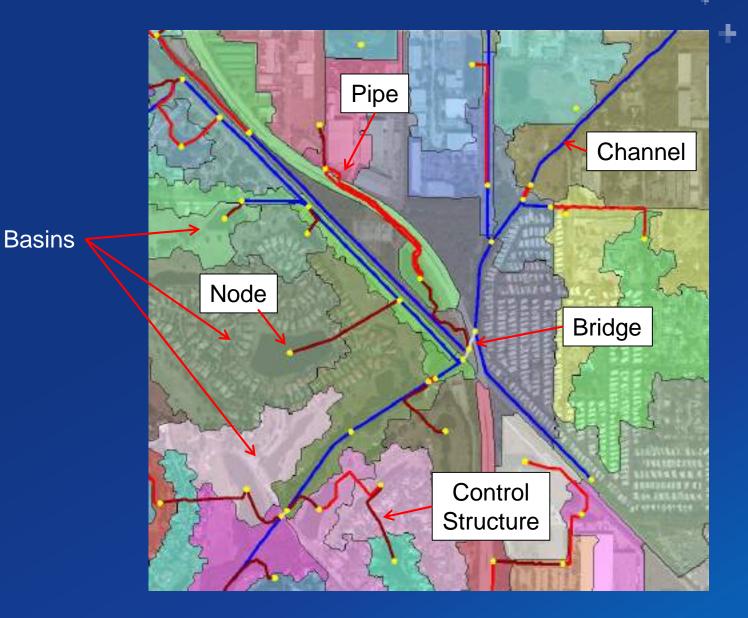

Interconnected Channel & Pond Routing Model

ICPR4

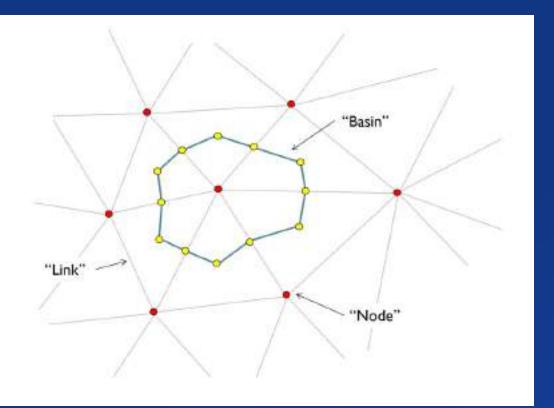
Pete Singhofen & Warren McKinnie

Arc Hydro ICPR4

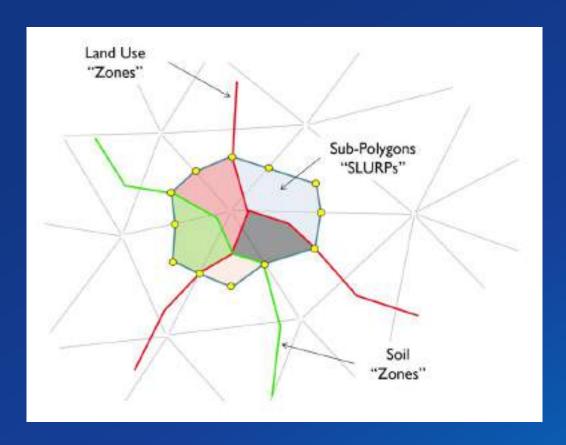
÷



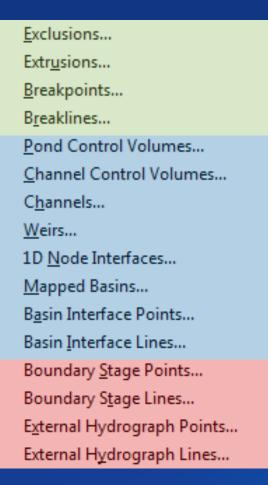
÷


ICPR4 Building Blocks

Nodes, Links, Basins


- Runoff hydrographs from "Basins" are delivered to "Nodes"
- Water surface elevations are calculated at "Nodes"
- Flows are calculated for "Links" based on WSEs at the connecting nodes

Finite Volume Approach Based on Underlying Triangular Computational Mesh



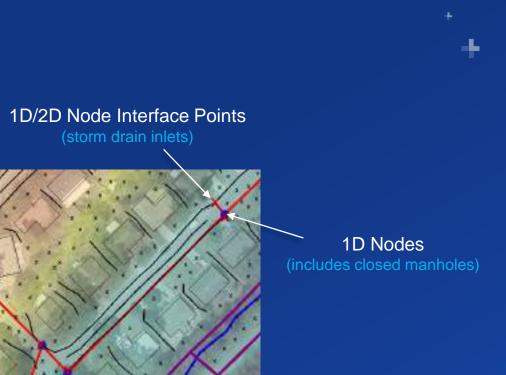
Important Characteristics of a 2D Surface Model

- 1. Reasonably Replicate Terrain
 - a. Storage
 - b. Ridges and Valleys
 - c. Obstructions
- 2. Mechanisms to Interface with 1D Components
- 3. Boundary Condition Flexibility
 - a. Stage
 - b. External Flow

2D Graphical Elements

Terrain Characterization

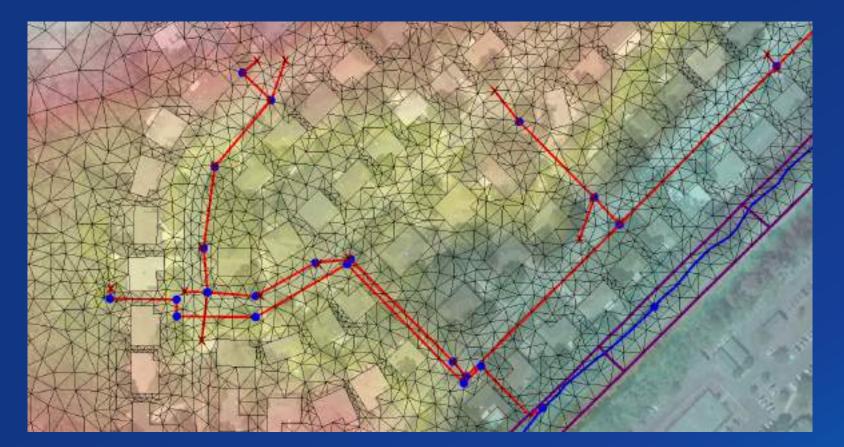
Interface with 1D Elements


Boundary Conditions

Break Lines (guarantee triangle edges

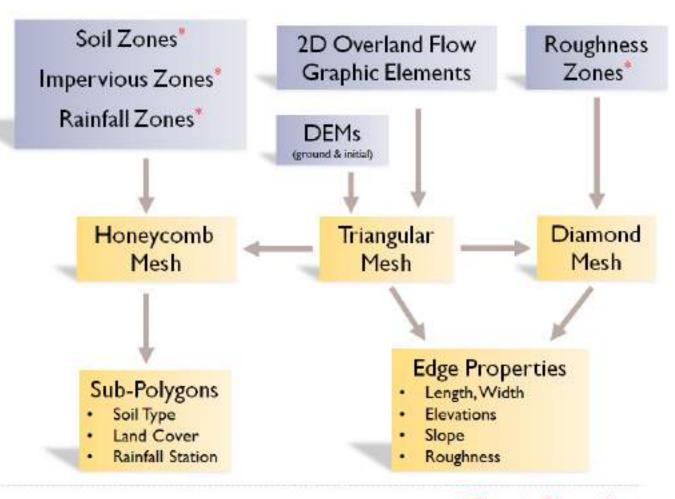
Break Points

Extrusions

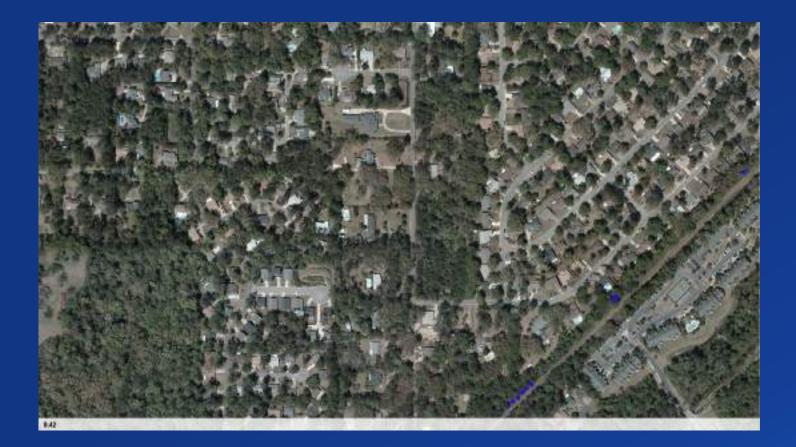


Channel Control Volumes (1d/2d interface)

1D Channel Links include surveyed cross sections

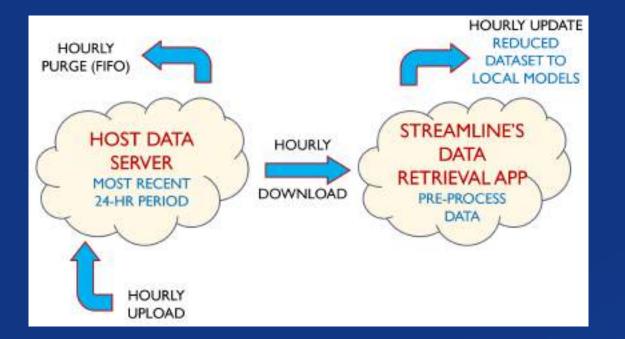

Triangular Mesh Generation

Honeycomb Mesh Generation



* Thematic Polygon Maps

Mesh Parameterization Process



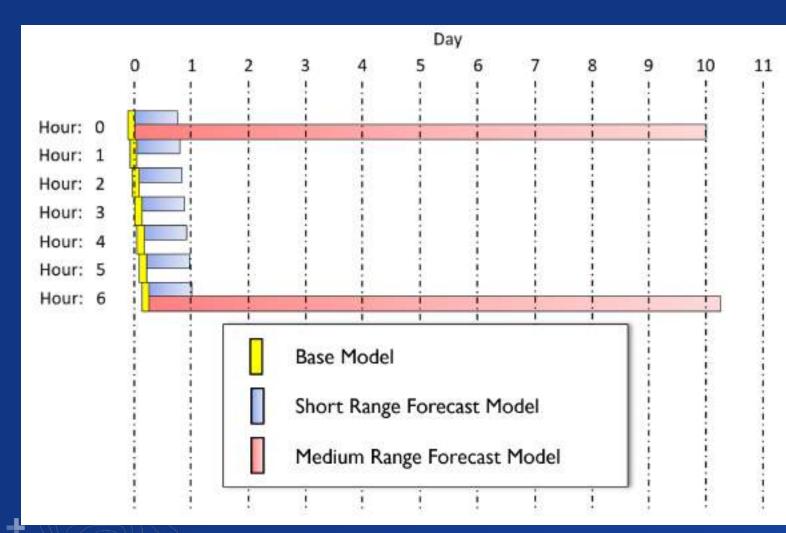
Real-Time Flood Forecasting with ICPR4

National Water Model (NWM) Gridded Forcing Data Products (Rain/ET)

Near Real-Time

Present Time Minus 1&2 Hours (Radar Only) Present Time Minus 3 Hours (Gage Adjusted)

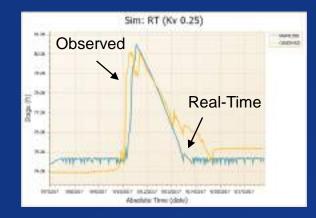
Short Range Forecast

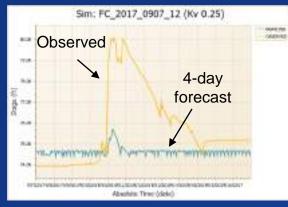

Forecast Duration: 18 hours in 1-hour Increments Forecast Frequency: Every hour

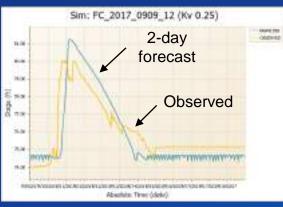
Medium Range Forecast

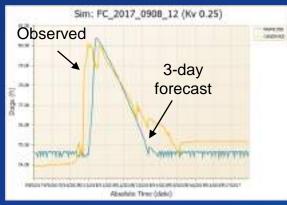
Forecast Duration: 10 days in 1-hour Increments Forecast Frequency: Every 6 hours

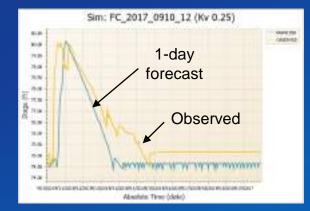
Real-Time Flood Forecasting with ICPR4


- Base model runs continuously in near real-time
- Base model maintains current surface water and groundwater levels and soil moisture conditions
- Forecasts are spawned from base model using it for initial conditions




Real-Time Flood Forecasting with ICPR4 Hurricane Irma




NWM 1-km² Forcing Grid

GWIS/ICPR4 Demo

Final Thoughts

Final Thoughts

- Model integration is an active area of Arc Hydro development.
 - Let us know what you think, what you need.
- Get involved with Arc Hydro.
 - Use the Community pages to interact with each other and the Arc Hydro team.
 - More focused the better!
 - Or email us directly

Questions?

Getting involved

<u>Arc Hydro Web Page</u>

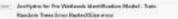
Arc Hydro

GIS for Water Resources

Building a Water Resources Foundation Water reserve recording to the second strategies and provide relationship the fact with a second party second strategies resoluvelocities for the fact with a second party second strategies with velocities of the main strategies and second strategies with a second second strategies and second strategies with a second strategies and s

Water Resources

<u>Water Resources Industry Web Page</u>



<u>Arc Hydro Community</u>

- archydro@esri.com
- ddjokic@esri.com

Water Resourc	es	~~~~
Q Services		thursd at
All Boards in This Pla	ice	
Water Balancese Classifications • set of •	Non-Responsible and a	Alars Sauce
Water Strangers Version	Non-Respondents	
stest Activity	101110-Com	-

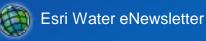
in the second

0.000

+1111 + i

Tran Collaborations

From Paper and Pendito Mobile Maps and Appl



@EsriWater

@EsriWater

L

<u> 77</u> Esri Water Meetup

In Closing

Announcing "Arc Hydro Office Hours"

• May 11th, 9-10 PDT. "Terrain and watershed processing in Arc Hydro"

- https://www.meetup.com/Esri-Water-Meetup/events/277554666/

Tuesday, May 11, 2021

Water Resources Office Hours - Terrain & Watershed Processing in Arc Hydro

Hosted by Christa C. and 2 others	📩 Share
Details Join the Esri professional services team for water resource focused office hours. Throughout 2021, Esri's hydro experts will be hosting virtual office hours to discuss common water resources worklows. During these sessions,	Esri Water Meetup Public group
the team will be giving a 10-minute presentation and then opening the floor up for discussion and Q&A.	(1) Tuesday, May 11, 2021 9:00 AM to 10:00 AM PDT
May's office hour will focus on terrain and watershed processing in Arc Hydro.	Online event Link visible for attendees
These sessions are interactive, please come prepared to join the discussion.	

Arc Hydro in Action Webinar Series

• All webinar recordings will be available on demand.

Arc Hydro in ArcGIS Pro

Don't miss your opportunity to connect and have your questions answered by Early Arc Hydro expert, Dr. Dean Djokic

Thursday, February 25, 2021 900 no. 10:00 no (PST)

REGISTER TODAY!

Arc Hyrdo hydraulic capabilities from Esri's

Arc Hydro: Hydrology & Hillslope

Don't miss this opportunity to learn from Esn's hydro experts and special guests Dr. Dana Lapides & Anneliese Sytema.

Thursday, March 25, 2021 9:00 AM 10:00 AM (PST)

REGISTER TODAY!

Arc Hydro: Flooding & Forecasting Don't miss this opportunity to learn about Arc Hyrdo hydraulic capabilities from Esri's

Arc Hydro: Support for Hydrologic and Hydraulic Modeling

Join Early hydro expert, Dr. Dean Djokic, to learn amability can do for integrated hydrologic and hydroulic modeling.

Thursday, April 15, 2021 9(00 avi-10:00 avi (PST)

REGISTER TODAY!

THANK YOU!

