

Arc Hydro in Action Webinar Series

- 2/25/21: Arc Hydro in ArcGIS Pro
- 3/11/21: Arc Hydro: Flooding & Forecasting
- 3/25/21: Arc Hydro: Hydrology & Hillslope
- 4/15/21: Arc Hydro: Support for Hydrologic and Hydraulic Modeling

х

Announcements

Watch webinar one and two at your convenience

- Arc Hydro in ArcGIS Pro
- Arc Hydro: Flooding & Forecasting

• <u>Applied Meteorology Using ArcGIS (webinar series)</u>

Polling Questions

Did you attend or watch the first two webinars?

- Yes, Arc Hydro in ArcGIS Pro
- Yes, Arc Hydro: Flooding and Forecasting
- No

Presenters:

Dana Lapides, PhD Postdoctoral Scholar UW-Madison Aquatic Sciences Center Annelise Sytsma PhD Candidate University of California, Berkeley Gina O'Neil, PhD Technical Consultant Esri

Dean Djokic, PhD

Water Resources Practice Manager

Esri

Arc Hydro: Hydrology and Hillslope

2021 "Arc Hydro in Action" Webinar Series

Webinar 3 Topics

- Quick review of Webinars #1 & #2
- Statistical hydrology.
 - Terrain preprocessing, characterization, and streamflow statistics
- Hillslope Hydrology and Critical Duration tools.
 - Theory and practice
- Distributed hydrologic modeling
- Questions

Review of Webinars #1 and #2

Dean Djokic

Arc Hydro: Vision

"Provide practical GIS framework for development of integrated analytical systems for water resources market."

Product \ Capability Summary

- "No fee" downloadable offerings:
 - Data model
 - Tools
 - Workflows
 - Documentation
 - Available now :
 - ArcMap tools all versions up to 10.8
 - Pro tools all versions up to 2.7
 - Web services in the Living Atlas

• Optional offerings:

Training (paid) Consulting (paid)

yellow.esri.com - /archydro/archydro/Setup/			
[30 Reserve Objectory]			
1221/2024 1.01 20 8/32/2027 3.00 20 4/32/2027 3.00 20 8/32/2027 3.00 20 5/32/2021 10/32 20 5/32/2021 10/32 20 5/32/2021 10/32 20 5/33/2021 2/32 40 5/33/2021 2/32 40 5/33/2021 2/32 40 5/33/2021 2/32 40	이외에 2014 이외가 2014		

 Average of 1000 views per month of the download page

Arc Hydro Tools Summary Functionality Grouping

Foundation

Terrain preprocessing

- ID mgmt.

Administration

- QA

- Configuration

- Streams

- Sinks

- Flow patterns

General implementation

Watershed delineation

- Watershed

- Sub-watershed
- Batch processing

Floodplain delineation

- Streams
- Lakes

- Forecast

Watershed characterization

- Pollutant loads

- Impervious areas
- Runoff characteristics

Stormwater

- Built infrastructure
- Surface drainage
- Connectivity

Living Atlas

Specific implementations

÷

- Watershed delineation
- Downstream tracing
- Floodplain delineation

Customer Specific

- Nebraska DNR
- USFS GRAIP-Lite
- Illinois DNR

integration

Scientific model

- HEC-HMS - HEC-RAS
- ICPR

Arc Hydro "Required" Reading

- Arc Hydro Project Development Best Practices (general)
- Arc Hydro ArcGIS Pro Project Startup Best Practices (Pro)
- Arc Hydro Overview of Terrain Preprocessing Workflows (workflow)
- Arc Hydro HydroPeriod Tool (toolset / workflow)
- Arc Hydro Wetland Identification Toolset (Pro / toolset / workflow)
- Arc Hydro Stormwater Processing (toolset / workflow)
- Arc Hydro Identifying and Managing Sinks (workflow)
- Arc Hydro Support for Hydrologic Modeling (workflow)
- Arc Hydro Calling Arc Hydro Tools in Python (developers)

Floodplain Delineation Solutions Matrix

- Different levels of complexity are possible/needed to determine flood extents
- Simple, based on terrain and observations only:
 - "Flooding out" based on DEM, stream centerline, and point data
 - HAND approach (constant depth of flooding per reach)
- Complex, based on hydraulic modeling (using external hydraulic models):
 - 1D
 - 2D
 - Full or simplified equations (Navier-Stokes / Saint-Venant / ...)

Flood Impact Forecasting

*

Flood Impact Forecasting

Dave Sekkes, Chester County EOC

Quotes of the day/month/year/...

- "All models are wrong, but some are useful" (George Box ~1976)
- "Perfect is the enemy of the good" (Voltaire ~1770)
- "A fool with a tool is still a fool"
 - (reported by Ken Lanfear, USGS ret.)

Statistical Hydrology

Dean Djokic

GIS for Hydro Modeling "Cycle"

- **GIS** is used for landscape characterization and model parametrization.
- Hydrology and Hydraulics (H&H) is used for determination of flows, depths and velocities.
- GIS is used for result postprocessing and visualization.
- GIS and H&H modeling are closely connected as one impacts the other

Regression Equations – USGS StreamStats

- Used to estimate streamflow statistics, both high and low flows, for ungaged sites (in uncontrolled flow environment)
- Relate streamflow statistics to measured basin characteristics
- Developed by all 48 USGS districts on a state-by-state basis through the cooperative program (usually sponsored by DOT)

Example Regression Equation

• Regression equations take the form:

 $Q_{100} = 0.471 * A^{0.715} * E^{0.827} * SH^{0.472}$

• Where

- E is mean basin elevation, in feet
- SH is a shape factor, dimensionless

U.S. Bayermont of the familier U.S. Basinghal Barwa

Basin Characteristics Used for Peak Flows

Basin characteristic	# of States using
Drainage area or contributing drainage area (square miles)	51
Main-channel slope (feet per mile)	27
Mean annual precipitation (inches)	19
Surface water storage (Lakes, ponds, swamps)	16
Rainfall amount for a given duration (inches)	14
Elevation of watershed	13
Forest cover (percent)	8
Channel length (miles)	6
Minimum mean January temperature (degrees F)	4
Basin shape ((length) ² per drainage area)	4
Soils characteristics	3
Mean basin slope (feet per foot or feet per mile)	2
Mean annual snowfall (inches)	2
Area of stratified drift (percent)	1
Runoff coefficient	1
Drainage frequency (number of first order streams per sq. mi.)	1
Mean annual runoff (inches)	1
Normal daily May-March temp (degrees F)	1
Impervious Cover (percent)	1
Annual PET (inches)	1

... and many others

Role of GIS

- Systematize methodology and datasets used in the process (repeatability).
- Provide better tools for deriving characteristics for regression equation determination.
- Provide a common (single) access to the methodology (for users and maintenance).
- Provide a map-based user interface.
- Speed up the process (instead of hours, minutes).
- Web and desktop implementation are based on Arc Hydro.

StreamStats Implementation Activities

- USGS lead effort
- State-based
- ArcGIS Server technology (10.7.1)
- Hosted in Denver
- Extended functionality

Source: https://streamstats.usgs.gov/ss/

March 2021

StreamStats Demo

https://streamstats.usgs.gov/ss/

StreamStats Demo

Report	Parameter Code
	DRNAREA
Enter a report fills and/or comments have that will display on the printed	PRECPRIST
Enter report little)	
StreemStats Report	
Setar querrecidal	Peak-Row St.
Some commanta haro	Parameter
	DRNAREA
	PRECPRIST

StreamStats Report

Region ID: Workspace ID: Glicked Point (Latitude, Longitude): Time:

+

-

DRNAREA Area that drains to a point on a stream PRECPRISIO Basin average mean annual precipitation for 1981 to 2010 from

Basis Characteristics

Parameter Description

PRISM

I THEF IT THE DEPARTMENT IS DETECTIVE THE REQUESTED FRAME. BUTTLENES WERE AND ADDRESS

163

Condition 17 mil

1D 1D20190707003520844000 45.47590, -115.37571 2019-07-06 17:32:22 -0700 Peak Flow Statistics Parametersawa Pareleges Statistics

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Dreinege Area	0.92	square miles	8.63	1040
PRECPRIS10	Mean Annual Precip PRISM 1981 2010	25.4	inches	30.6	40.7

Peak-flow Statistics Electermerane new team torrests

The or much of the permitting in advald the page and tange. Estimates are a set quite ball informer encou

Peak-Row Statistics Row Reportance Incrimine Statistics

Statistic	Value	Unit	
1.25 Year Peak Flood	2.85	ft*3/a	
1.5 Year Peak Flood	3.42	ft*3/s	
2 Year Peak Flood	4.18	ft+3/s	
2 33 Year Peak Flood	4.1	ft*3/s	
5 Year Peak Flood	6.26	ft*3/s	
10 Year Peak Flood	7.61	ft+3/s	
25 Year Peak Flood	9.75	ft*3/s	
50 Year Peak Flood	11.1	ft*B/s	
100 Year Peak Flood	12.7	ft*3/s	
200 Year Peak Flood	14	ft13/s	
500 Year Peak Flood	76.4	ft*3/s	

Peak-Flow Statistics Citations

Wood, M.S., Fosness, R.L., Skinner, K.D., and Veilleux, A. 0., 2016, Estimating peak flow frequency statistics for selected gaged and ungaged sites in naturally flowing streams and rivers in Idaha: U.S. Geological Survey Scientific Investigations Report 2016-5883, 56 p.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.3.8

📥 Download 🗸

Desktop Implementation

StreamStats or any similar methodology can be implemented within desktop environment.

- Need:
 - Data.
 - Equations (hopefully with well defined GIS parameter extraction methodology).
- Implementation:
 - Local watershed delineation and characterization.
 - "Regression calculator"
 - External app.
 - Python
 - Excel

Desktop Implementation

Pre-StreamStats for Wisconsin was done in ArcView 3 and Excel.

R25C1 •	= Legend 2	3	4	5	5	7	8	9	10	11	12	13	14	17
Wisconsin	Peak Flow F	egress	ion Cal	culator	(2003	equatio	ns)							T
Basin ID	28	1				3.01								
		Rey	ion 1	Reg	ion 2	Regi	t wa	Reg	lon 4	Reg	iori			
	Input Data	Min	Max	ML	Max	Min	Max	Min	Max	Nin	Max			
Area (A)	47,5656838	0.28	2120	0.56	1760	. 1	2240	0.05	696	1.32	3340			
Rainfall (INTEN	6) 1.79	5:18	-5.29	1.39	5.28	4.24	5.29	4.24	6.28	4.66	6.29		_	
Chanzel Slope	(S) 40.5206438	2.27	210	3.85	26	0.84	1.6	1.08	204	0.7.4	74.2			
Storage (S7)	19.4126565	0	8.2	0	201	0	337	0.17	52.4	D	-15.4		_	-11
Son Permatin	52 91245	70.02	45.47	24.00	2.58	20.12	11.45	716.44	4.00	0.07	41.65		-	
Forest Cover (F	OF0 56,5023634	0	56.9	3.17	ST 9	1.18	95.3	0.19	96	0.42	28.8			
	98 - Bi	1		Sec. 1		1	SS			2	1. 13			
A/62 CO/	tribution (%)	0		85.67332	l	0	and the	14.32000		D			_	
		1 0	1.1.1		Design	Discharges	(cfs)	1 2	1000	1 1 1 1		10.0	-	-17
Return P	eriod (years)	Her	2301	Reg	100 2	HP2	60 3.	Hel	1071 4	HED	101.21	Final	-	- 1
	2 8		a .		182		A	0	40		14	1002/8	-	-
-	10		21. 21.	37	140	1	75	1	10	10	LEP	2613.5	-	-
	25		50	3	80		1	1	96	1	27	3554.2		
	50		55.	.5	372		10	1	002		146	4275.5		
	160		60	54	490	- 11	17	2	221	. 10	14	5029,2		
2	**** <u>1</u>		6	()()		1	1		1910 - C		12		<u></u>	
Langel	Mail simb													
-1980 II.	Dist applica	tin i												
	Out of rants	1			-			-		-				18
- Second	Not applica Out of rang												_	

Arc Hydro Hillslope: an Arc Hydro tool for hillslope-scale runoff analysis

Anneliese Sytsma and Dana Lapides

In collaboration with: Gina O'Neil, Dean Djokic, Mary Nichols, and Sally Thompson

Polling question

• Have you used the Rational Method for peak flow prediction?

- Yes

- Yes, but only in an educational course

- No

Background and Motivation: Hillslopes and Curvature

Dana Lapides

Hillslopes

- Deliver water and sediment to streams
- Can be used as a hydrologic response unit
- Allow for analysis of important questions related to hydrology and morphology

Hillslope Width Functions

Overland flow with Hillslope Width Functions

hillslope width

hillslope width

hillslope width

convergent

uniform

divergent

 Lapides, Dana A., et al. "Analytical solutions to runoff on hillslopes with curvature: numerical and laboratory verification." Hydrological Processes 34.24 (2020): 4640-4659 https://onlinelibrary.wiley.com/doi/abs/10.1002/hyp.13879.

Using HWF to explore curvature impacts on design peak flows Dana Lapides

The Rational Method

Kuichling, E. (1889). "The relation between the rainfall and the discharge of sewers in populous districts." *Trans. Am. Soc. Civil Eng.*, 20(1), 1–56. Mulvany, T. (1851). "On the use of self-registering rain and flood gauges in making observations of the relation of rainfall and flood discharges in given catchment." *Trans. Instit.* of *Civil Eng. Ireland*, 4, 18–33.

Timescales

 Time of Concentration
 Travel time to outlet from furthest point in landscape

$Q_{max} = CAI$

Critical Duration

 Storm duration that maximizes peak flow for a given IFD curve and hillslope

Duration (D)

Grimaldi, S., et al. "Time of concentration: a paradox in modern hydrology." *Hydrological Sciences Journal* 57.2 (2012): 217-228. McCuen, Richard H. "Uncertainty analyses of watershed time parameters." *Journal of Hydrologic Engineering* 14.5 (2009): 490-498.

Impact of hillslope curvature on timing of peak flows

Lapides, Dana A., et al. "Rational Method time of concentration can underestimate peak discharge on hillslopes" Journal of Hydraulic Engineering. (2021)

Impact of curvature on timescales and peak flow

Lapides, Dana A., et al. "Rational Method time of concentration can underestimate peak discharge on hillslopes" Journal of Hydraulic Engineering. (2021)

Arc Hydro Hillslope and Critical Duration toolbox

Anneliese Sytsma

Toolbox overview

- 🔺 🤷 Arc Hydro Tools Pro
 - Attribute Tools

3

4

2

- 🔺 🏠 Critical Duration
 - Hillslope Roughness
 - Optimize Critical Duration
- GIS Data Exchange
- 🖻 🖾 H & H Modeling
- Network Tools
- Point Characterization
- Terrain Morphology
- 🔺 🄄 Terrain Preprocessing
 - Partition Hillslopes
 - Hillslope Width Function

Partition hillslopes

- Arc Hydro Tools Pro
 - Attribute Tools
 - Critical Duration

3

4

2

- Hillslope Roughness
- Optimize Critical Duration
- 🖻 🎰 GIS Data Exchange
- 🖻 🖾 H & H Modeling
- Network Tools
- Point Characterization
- Terrain Morphology
- 4 🔄 Terrain Preprocessing
 - Partition Hillslopes
 - Hillslope Width Function

 Prerequisite steps: 1) Fill DEM 2) Basic dendritic terrain processing 	
Partition Hillslopes	\oplus
Parameters Environments	?
* Input Catchments	~
* Input Flow Direction Raster	•
	• 🗃
* Input Flow Accumulation Raster	• 🚘
* Input Drainage Lines	
	·
Input Threshold	1500
Output Hillslopes	

Partition hillslopes

Identifies catchment initiation point (headwater hillslope outlet)

Delineates headwater hillslopes draining to headwater outlet

Bisects catchment with drainage line

Hillslope Width Function

- Arc Hydro Tools Pro
 - Attribute Tools
 - 4 🔄 Critical Duration
 - Hillslope Roughness
 - Optimize Critical Duration
 - 🖻 🎰 GIS Data Exchange
 - 🖻 🖾 H & H Modeling
 - Network Tools
 - Point Characterization
 - Terrain Morphology
 - 4 🔄 Terrain Preprocessing
 - Partition Hillslopes
 - Hillslope Width Function

\odot	Hillslope Width Function	\oplus
Parameters	Environments	?
* Input Partition	ned Hillslopes	-
		-
Input Numbe	r of Points	24
* Output Width	Function Hillslopes	

1

2

Hillslope Width Function

Hillslope roughness

- 🔺 🏙 Arc Hydro Tools Pro
 - Attribute Tools
 - 🔺 🏠 Critical Duration

3

4

1

2

- 📕 Hillslope Roughness
- Coptimize Critical Duration
- GIS Data Exchange
- 🖻 🖾 H & H Modeling
- Network Tools
- Point Characterization
- Terrain Morphology
- 4 🔄 Terrain Preprocessing
 - Partition Hillslopes
 - Hillslope Width Function

©	Hillslope Roughness	\oplus
Parameters	Environments	0
* Input Width F	unction Hillslopes	•
* Input Landco	ver Raster	• 🕞
* Input Hydro E	DEM	•

Hillslope roughness

https://www.mrlc.gov/

Slope (S)

 $\alpha = \frac{\sqrt{S}}{n}$

Kalyanapu, A. J. (2009). Effect of land use-based surface roughness on hydrologic model output. Journal of Spatial Hydrology, 9(2), 21.

Optimize Critical Duration

Arc Hydro Tools Pro 4 Attribute Tools Þ Critical Duration 4 Hillslope Roughness **Optimize Critical Duration** GIS Data Exchange 🔄 H & H Modeling Þ Network Tools Þ E Point Characterization Þ Terrain Morphology Þ A Strain Preprocessing E Partition Hillslopes Hillslope Width Function

3

4

1

2

(Optimize Cri	itical Duration 🕀
<u> </u>	Parameters Environments	?
*	Input Alpha Hillslopes	-
	Input K Parameter for Rainfall Intensity	0.0005
	Input b Parameter for Rainfall Intensity	0.5
	Input Saturated Hydraulic Conductivity Ks [mm/s]	0.0009
	$I = K / D^{b}$	
	Duration (D)	

Optimize Critical Duration

IFD parameters (K, b) Soil Ks

Analytical solution for overland flow on hillslopes with curvature

 $Q_{max} = CAI$

Example outputs

Partitioned hillslopes Hillslope width function Image: state of the state of

Hillslope alpha

α

Critical Duration

Demonstration

Anneliese Sytsma

Arc Hydro Hillslope + Critical Duration Tools: A Quick Demo

Distributed Modeling

Gina O'Neil

Collaboratively Implementing the Science as an Arc Hydro tool

_L

3. HMS Model

Export

Preparing

Data for

HMS Export

Create

HEC-HMS

Basin File

+

Final Thoughts

Dean Djokic

Arc Hydro in Action Webinar Series

- 2/25/21: Arc Hydro in ArcGIS Pro
- 3/11/21: Arc Hydro: Flooding & Forecasting
- 3/25/21: Arc Hydro: Hydrology & Hillslope
- 4/15/21: Arc Hydro: Support for Hydrologic and Hydraulic Modeling GIS for integrated H&H modeling. Why GIS is not just model pre- and post-processor.

Questions?

Getting involved

Arc Hydro Web Page

Arc Hydro

GIS for Water Resources

Building a Water Resources Foundation doe primerics when gapping wohn along woh withing the mean of anniholehead, and there drop means the contact

5 Water Resources

and involved proceed advantable to see the beautype of differences of

<u>Water Resources Industry Web Page</u>

<u>Arc Hydro Community</u>

- archydro@esri.com
- ddjokic@esri.com

Water Resourc	es Part	152
Q		Parts +
Anna / Al Connection / Solution /	Annual Annual Control	0
All Boards in This Pla	ice	
Were Response Classifiers • (*) of • (*)	Non-Responsible a class a l	Harry Strange on Disaster in the
Write Brancost Verson • 199 • •	Non-fraction laws: $\bullet = \bullet^{-1}$	
atest Activity	8.019 Ge	- Constitue
Acception for the Westmann Manifest Resident Tess Store ResterColling are	eline Mindel - State	Tran Cultaborers

0 0 1

+ (n) + (e)

and the second second

From Paper and Penulito Mobile Maps and Appril

@EsriWater

@EsriWater

TR Esri Water Meetup

