

Spatial Analyst and Image Server Improvements for Water Resources

Steve Kopp

Hydrology tool improvements in ArcGIS 10.6 / Pro 2.1

- Flow Direction and Accumulation tools
 - D-Infinity flow direction algorithm
 - Multiple Flow Direction flow direction algorithm
 - Flow Accumulation data type: DOUBLE
- Flow Distance tool (new)
- Improved performance and scalability
- Now part of ArcGIS Enterprise Image Server

platform big picture view

ArcGIS for Developers

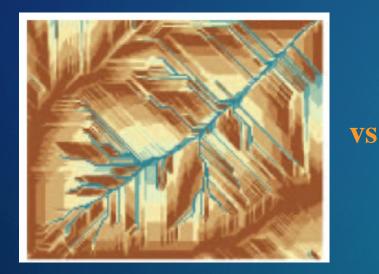
D-Infinity flow model

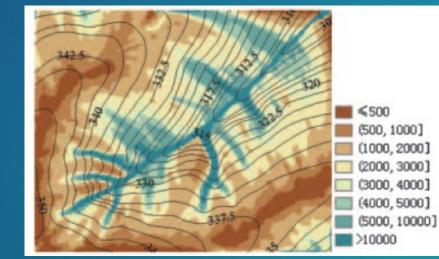
Steepest single direction

D8

463782627783827980

D-Infinity best for modeling distributed hydrologic processes, such as runoff generation or erosion. Steepest downslope direction

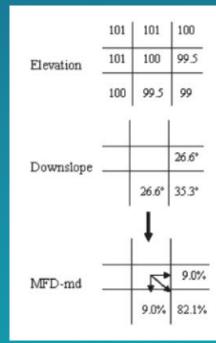

Convergent flow:


flow to one downstream neighbor Divergent flow: flow proportioned up to two downstream neighbors

Tarboton, D. G., (1997), "A New Method for the Determination of Flow Directions and Contributing Areas in Grid Digital Elevation Models," Water Resources Research, 33(2): 309-319.

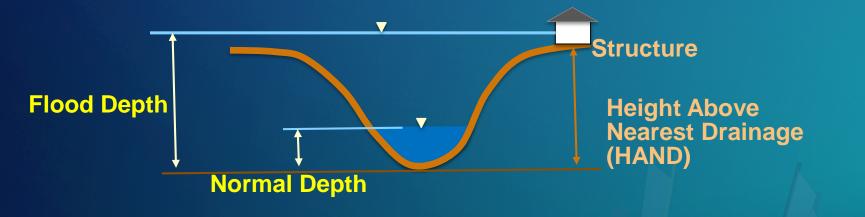
Multiple Flow Direction (MFD) flow model

- Better flow accumulation maps in low-relief areas
- Flow partitioning is adaptive to local terrain conditions.

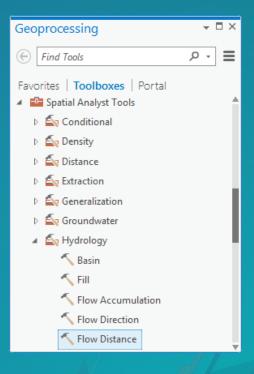


D8 Flow Accumulations

MFD Flow Accumulations

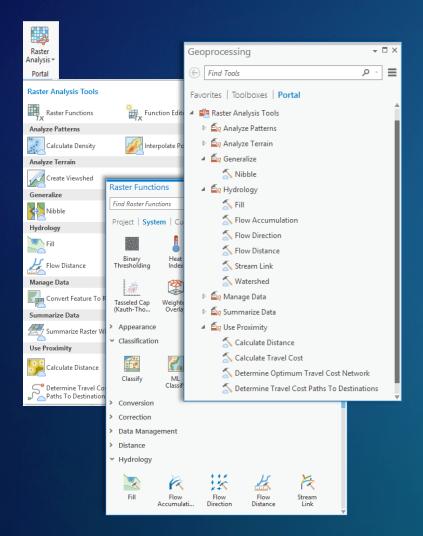


Flow proportioned to all downstream neighbor(s)


Qin, C., Zhu, A. X., Pei, T., Li, B., Zhou, C., & Yang, L. 2007. "An adaptive approach to selecting a flow partition exponent for a multiple flow direction algorithm." International Journal of Geographical Information Science 21(4): 443-458.

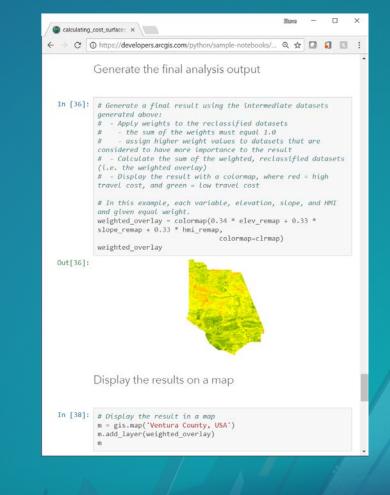
Flow Distance tool

- Compute vertical/horizontal downslope distance to streams over single or multiple flow paths.
- Supports D8, D-Infinity and MFD algorithms for computing flow distance.
- Used in computation of Height Above Nearest Drainage (HAND).
 Flooding occurs when water depth is greater than HAND.

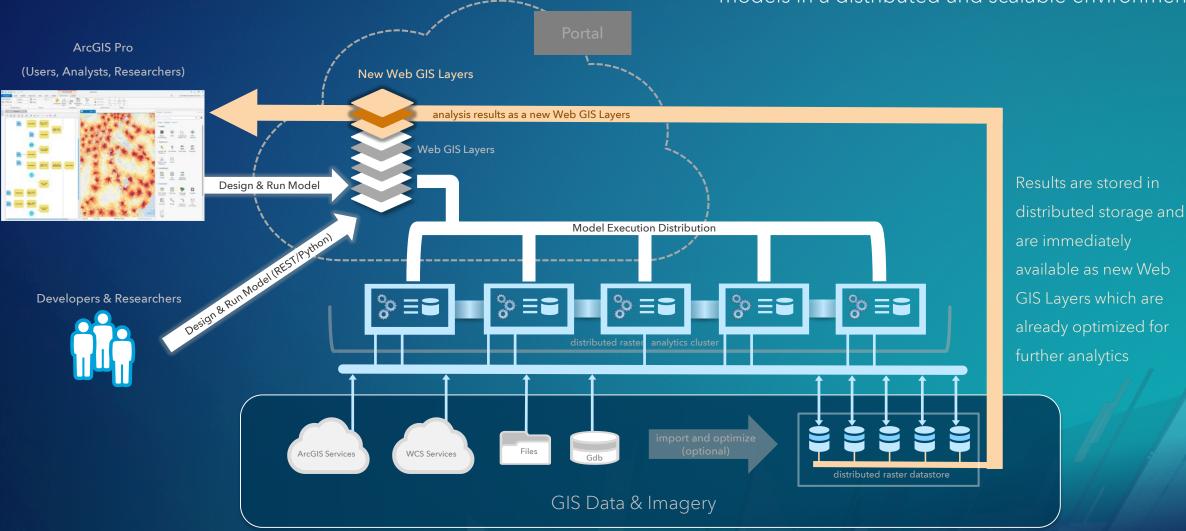




ArcGIS Enterprise Image Server (aka Raster Analytics)


Pro

Web



Python API

Image Server process flow

Raster Analytics can power systems that need to execute spatial analysis and image processing models in a distributed and scalable environment.

Raster GIS and Image Analysis Tools

Math Abs Arithmetic Band Arithmetic Calculator	Square Square Root Times Bitwise And Bitwise Left Shift Bitwise Not	Not Equal ArgStatistics Cell Statistics Statistics ACos ACosH ASin	Correction Apparent Reflectance Geometric Correction Speckle Filtering (Lee,Frost,Kuan) Thermal noise (Sentinel) Radiometric Calibration (sentinel)	Visualization & Appearance Contrast and Brightness Convolution Pansharpening Resample Statistics and Histogram	Analysis: Distance & Density Euclidean Distance Cost Distance Least Cost Path Kernel Density	Analysis: Overlay Weighted Sum Weighted Overlay	Python Custom Algorithms
Divide Exp Exp10	Bitwise Or Bitwise Right Shift	ASinH ATan ATan2	Data Management & Conversion	Stretch	Analysis: Band Math & Indices	Analysis: Zonal Zonal Statistics	
Exp2 Float Int Ln Log10 Log2 Minus	Bitwise Xor Boolean And BooleanNot Boolean Or Boolean Xor Equal To Greater Than	ATanH Cos CosH Sin SinH Tan	Raster to Vector Vector to Raster Colormap Colormap To RGB Complex Grayscale Remap / Reclass	Interpolation Empirical Bayesian Kriging Interpolate Irregular Data Nearest Neighbor IDW Swath	SAVI / MSAVI / TSAVI GEMI GVI (Landsat TM) PVI Tasseled Cap (Kauth-Thomas) Binary Thresholding	Zullar Statistics	
Mod Negate Plus Power Round Down Round Up	Greater Than Equal Is Null Less Than Less Than Equal		Spectral Conversion Unit Conversion Vector Field LAS to Raster LAS Dataset to Raster Clip Composite	Surface Generation & Analysis Aspect Curvature Elevation Void Fill	Analysis: Hydrology Fill Flow Accumulation Flow Direction Flow Distance Stream Link		
Conditionals Con Set Null			Extract Bands Mask Mosaic Rasters Rasterize Features Reproject Nibble	Hillshade Shaded Relief Slope Viewshed	Watershed Chalvesis: Image Sugmentation & Segmentation (Mean Shift) Training (ISO, SVM, ML) Supervised Classification	Classification	


Chain functions together into Raster Models and apply them to answer complex questions

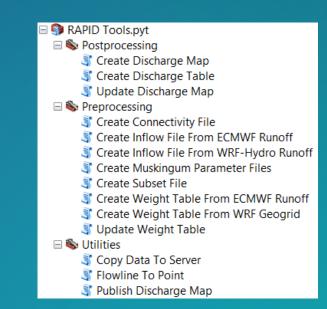
Hydrology tool performance and scalability

Distributed Computing on a Raster Analytics Cluster (4 nodes, 8 processors per node) Local cluster with single file input and output data, no parallel I/O testing

- HUC2 Regions 7-12 | 10m | ~105 billion cells
 - Fill 18 hrs
 - Flow Direction D8 5 hrs
 - Flow Direction D∞ 13 hrs
 - Flow Accumulation 24 hrs
- The contiguous United States (CONUS) | 10m | ~228 billion cells
 - Fill 51 hours
 - Flow Direction D8 11 hrs
 - Flow Accumulation 75 hrs

Scalability and Performance

Related open initiatives


- Hydrologic downscaling and model preprocessing
 - https://github.com/Esri/python-toolbox-for-rapid
- Streamflow visualization
 - Python workflows and service scripts
 - shared with National Water Center and BYU, need documentation for public release to Github

Flood inundation visualization

- Python workflows and service scripts
- shared with National Water Center, need additional work and documentation for public release to Github

HAND computation

- Will be added to Python API analysis example workbooks
- New Spatial Analyst tool, with additional workflow tools added to <u>Arc Hydro</u>

Hydrology workflow scalability improvements

- Computing hydrologic characteristics and flow patterns for US
 - For predicting stream flow and forecasting floods
- Old single thread tools required manual chunking of input
 - Performance suffered over half billion cells
 - Manually chunked into 57 pieces for processing
 - Several CPU months of compute plus human time reassembling
- Now running 500x larger data on a distributed cluster
 - Processing changed from several months to 2 days

30m US – 25 Billion cells 57 separate processing units

10m US – 230 Billion cells

A new paradigm in water understanding

- Hourly stream flow on 2.7 million stream reaches
- Working toward hourly national flood inundation forecasts
 - Much finer spatial and temporal scale than currently available

