
The Excel spreadsheet (xls) provided by Jane Hansen opens as in the following, missing the header and 

without the required initial 2 columns for ID and Date (the correct field order is {ID, DATE1, LAT1, LON1, 

DATE2, LAT2, LON2, … , DATEn, LATn, LONn}).  Also, no defined ranges were found…in order to view the 

named ranges, go to the Formulas tab (or ribbon), and select Name Manager as shown: 

 

 

The below shows nothing loaded in the Name Manager – now close the Name Manager to manipulate a 

few necessary changes on the sheet. 

 



Correct the sheet to reflect the missing header and missing 2 columns for ID and Date1 (it doesn’t 

matter what these fields are named – the script ‘expects’ to find lat/lon data in columns C, D and F, G, 

etc. (and is extensible).  For purposes of this demo, the contained ID and Date values can be ‘dummy’ 

values.  Below is how the corrected sheet may appear: 

 

 

 

In order to set the current sheet’s data range, you can ‘name’ the range - click ‘New…’ to open the New 

Name window from the Name Manager, with which we are going to name a range ‘data3’ to correspond 

to the Sheet3 it is found on – for the data on this sheet, use the range ‘=Sheet3!$A$1:$G$12’ as shown 

below (you may set the range interactively as well, using the button to the bottom right just above 

‘Cancel’.  Notice the scope is set to Sheet3. 

 



The Name Manager will list the new reference as follows: 

 

 

 

Do the same for Sheet2 (and get rid of Sheet1) – the following is how Sheet2 may look, including the 

New Name window entry: 

 

 



When the New Name window is dismissed, this is how the 2 ‘named’ references appear in the Name 

Manager – notice that data2 reflects the range for 2 records (13 records + header) more than data3 (11 

records + header): 

 

 

Also notice the Name box to the left of the cell address box (showing ‘data3’ below), that if you select 

the ‘named’ range reference, the range will highlight – this is a check that this naming of range 

references was done properly: 

 



Save the xls to more recent Excel version, xlsx.  The file is ready to run with the provided script, 

pointCentroidTest.py. 

This test script, although it could be made to run as a script tool, is geared to run from the same folder 

location as the xlsx.  Make sure that a copy of this spreadsheet is in the same location the zip file was 

‘unzipped’ to with the accompanying file geodatabase (gdb). 

A line in the script file needs changing to reflect the ‘new’ input file – open the script file (you may use 

Windows Explorer) by right-clicking and selecting ‘Edit with IDLE’ (or you can use ‘Open With’ and select 

a text editor like Notepad).  See below: 

 

 

Change line 6 to this: 

arcpy.env.workspace = os.path.join(rootpath, 'Wayne_exel.xlsx') 

…so that the script file appears as follows: 

 



Save and run the script – this is a simple script designed only for testing purposes, includes no error 

trapping or special messaging… 

You can double-click to run the script from Windows Explorer, or if you already have it open in IDLE, you 

may go to the script file window and select ‘Run’, then ‘Run Module’ (or hit F5). 

 

 

I prefer to run in IDLE because I can then see any printed messages/errors without any added program 

lines to pause an execution window.  If running via IDLE as I have shown and all runs well, this will be the 

only message output: 

 

 

 

As an extremely general idea what the points look like, furthermost to the east of the dataset extent, 

they appear as follows in the map (shown with ESRI_Imagery_World_2D), see next page… 



 

 

With the original script I posted, I was actually experimenting with loading multipoint geometry using an 

insert cursor and extracting the ‘centroid’ (via ‘multiPoint.trueCentroid) which I could have copied to 

another feature class with another insert cursor, but I simply loaded that into another multipoint 

feature.  As a result, every other multipoint (2, 4, 6, …, etc.) of the final projected multipoint feature 

class (multipointPCS_2) is the centroid. 

Later, I decided to better clarify by simply appending code to the original code attached earlier to write 

out the multipoint centroid geometry to a regular point feature class (which I will attach along with this 

document).  The new point feature class is called centroidsOnly and will simply be written to the same 

gdb. 

Recall that this is a scenario for the purpose of testing the ability to get centroids from multipoint 

records… the script did not have to be written this way, so if there are further questions about the gdb 

output (or staged feature classes), the following list outlines it: 

1 - multipointGCS_template 

This is a template fc in Geographic Coordinate System, GCS_WGS_1984, used as input – probably not 

needed.  I think I was initially having trouble with setting the Spatial Reference with the var, SR_GCS. 

2 - multipointPCS_template 

This is a template fc in Projected Coordinate System, NAD_1983_BC_Environment_Albers, used as input 

– also probably not needed....due to the same initial trouble setting Spatial Reference with the var, 

SR_PCS. 



3- multipointGCS 

This is the initially created GCS feature class, from the raw lat/lon coordinates. 

4- multipointPCS_1 

This was the 1st projected layer – the result of producing centroids on the GCS layer before projecting, 

for comparison with the placement of centroids after projecting (multipointPCS_2). 

5- multipointPCS_2 

This was the 2nd projected layer – as mentioned in item 4 above, this is the result of placing centroids 

after projecting, so that (as Dan Patterson mentioned in his post) the difference can be seen with the 

result in multipointPCS_1 (although not immediately apparent in this dataset – but there are 

differences, however minute in this case). 

6- centroidsOnly 

This was added code processing (see the code attached as well).  Both multipointPCS_1 and 

multipointPCS_2 fcs contain multipoint geometry of the centroids (for comparison purposes) – 

everything was simply loaded on a single cursor passes.  In case point geometry is desired, the fc called 

centroidsOnly was added as a ‘user-friendlier’ component.  multipointPCS_2 was used to generate this 

output, copied to Point geometry via an insert cursor.  (Another option would be to select every other 

record and execute the tool, Multipart To Singlepart.) 

 

It is not necessary to delete any of these gdb-contained fcs – simply exit any apps that may be locking 

anything contained therein and execute the script at will – overwriteOutput is set True so that relevant 

fcs will be replaced. 

 

As a ‘final’, more obvious depiction of the resultant centroid processing via these methods, see the next 

page (and you too can examine within ArcMap your own output as a result of using this script). 

 

 

 

 

 

 



 

The yellow points are the multipoint result (including the centroid); the red ‘X’ is the centroid only 

extracted to its own point fc, projected of course.  I am curious why the point sets are spread so far 

apart (over 1000 m), but of main concern in this exercise was to demonstrate working with geometry to 

produce centroids. 

 

 

This concludes the test… 

 

Enjoy, 

Wayne 


