Think Python

How to Think Like a Computer Scientist

Version 1.1.19

Think Python

How to Think Like a Computer Scientist

Version 1.1.19

Allen Downey

Green Tea Press

Needham, Massachusetts

Copyright © 2008 Allen Downey.
Printing history:
April 2002: First edition of How to Think Like a Computer Scientist.

August 2007: Major revision, changed title to How to Think Like a (Python) Programmer.
June 2008: Major revision, changed title to Think Python: How to Think Like a Computer Scientist.

Green Tea Press
9 Washburn Ave
Needham MA 02492

Permission is granted to copy, distribute, and/or modify this document under the terms of the GNU Free Doc-
umentation License, Version 1.1 or any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and with no Back-Cover Texts.

The GNU Free Documentation License is available from www.gnu.org or by writing to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.

The original form of this book is IATEX source code. Compiling this IXTEX source has the effect of generating
a device-independent representation of a textbook, which can be converted to other formats and printed.

The I&TEX source for this book is available from http://www.thinkpython.com

Preface

The strange history of this book

In January 1999 I was preparing to teach an introductory programming class in Java. I had taught
it three times and I was getting frustrated. The failure rate in the class was too high and, even for
students who succeeded, the overall level of achievement was too low.

One of the problems I saw was the books. They were too big, with too much unnecessary detail about
Java, and not enough high-level guidance about how to program. And they all suffered from the trap
door effect: they would start out easy, proceed gradually, and then somewhere around Chapter 5 the
bottom would fall out. The students would get too much new material, too fast, and I would spend
the rest of the semester picking up the pieces.

Two weeks before the first day of classes, I decided to write my own book. My goals were:

» Keep it short. It is better for students to read 10 pages than not read 50 pages.
* Be careful with vocabulary. I tried to minimize the jargon and define each term at first use.

* Build gradually. To avoid trap doors, I took the most difficult topics and split them into a
series of small steps.

* Focus on programming, not the programming language. I included the minimum useful subset
of Java and left out the rest.

I needed a title, so on a whim I chose How to Think Like a Computer Scientist.

My first version was rough, but it worked. Students did the reading, and they understood enough
that I could spend class time on the hard topics, the interesting topics and (most important) letting
the students practice.

I released the book under the GNU Free Documentation License, which allows users to copy, modify,
and distribute the book.

What happened next is the cool part. Jeff Elkner, a high school teacher in Virginia, adopted my book
and translated it into Python. He sent me a copy of his translation, and I had the unusual experience
of learning Python by reading my own book.

Jeff and I revised the book, incorporated a case study by Chris Meyers, and in 2001 we released
How to Think Like a Computer Scientist: Learning with Python, also under the GNU Free Doc-
umentation License. As Green Tea Press, I published the book and started selling hard copies
through Amazon.com and college book stores. Other books from Green Tea Press are available at
greenteapress.com.

vi Chapter 0. Preface

In 2003 I started teaching at Olin College and I got to teach Python for the first time. The contrast
with Java was striking. Students struggled less, learned more, worked on more interesting projects,
and generally had a lot more fun.

Over the last five years I have continued to develop the book, correcting errors, improving some of
the examples and adding material, especially exercises. In 2008 I started work on a major revision—
at the same time, I was contacted by an editor at Cambridge University Press who was interested in
publishing the next edition. Good timing!

The result is this book, now with the less grandiose title Think Python. Some of the changes are:

*] added a section about debugging at the end of each chapter. These sections present general
techniques for finding and avoiding bugs, and warnings about Python pitfalls.

* I removed the material in the last few chapters about the implementation of lists and trees. I
still love those topics, but I thought they were incongruent with the rest of the book.

* T added more exercises, ranging from short tests of understanding to a few substantial projects.

* T added a series of case studies—longer examples with exercises, solutions, and discussion.
Some of them are based on Swampy, a suite of Python programs I wrote for use in my classes.
Swampy, code examples, and some solutions are available from thinkpython.com.

* I expanded the discussion of program development plans and basic design patterns.

* The use of Python is more idiomatic. The book is still about programming, not Python, but
now I think the book gets more leverage from the language.

I hope you enjoy working with this book, and that it helps you learn to program and think, at least a
little bit, like a computer scientist.

Allen B. Downey
Needham MA

Allen Downey is an Associate Professor of Computer Science at the Franklin W. Olin College of
Engineering.

Acknowledgements

First and most importantly, I thank Jeff Elkner, who translated my Java book into Python, which got
this project started and introduced me to what has turned out to be my favorite language.

I also thank Chris Meyers, who contributed several sections to How to Think Like a Computer
Scientist.

And I thank the Free Software Foundation for developing the GNU Free Documentation License,
which helped make my collaboration with Jeff and Chris possible.

I also thank the editors at Lulu who worked on How to Think Like a Computer Scientist.

I thank all the students who worked with earlier versions of this book and all the contributors (listed
below) who sent in corrections and suggestions.

And I thank my wife, Lisa, for her work on this book, and Green Tea Press, and everything else, too.

vii

Contributor List

More than 100 sharp-eyed and thoughtful readers have sent in suggestions and corrections over the
past few years. Their contributions, and enthusiasm for this project, have been a huge help.

If you have a suggestion or correction, please send email to feedback@thinkpython.com. If I
make a change based on your feedback, I will add you to the contributor list (unless you ask to be
omitted).

If you include at least part of the sentence the error appears in, that makes it easy for me to search.
Page and section numbers are fine, too, but not quite as easy to work with. Thanks!

3

Lloyd Hugh Allen sent in a correction to Section 8.4.

Yvon Boulianne sent in a correction of a semantic error in Chapter 5.

Fred Bremmer submitted a correction in Section 2.1.

Jonah Cohen wrote the Perl scripts to convert the LaTeX source for this book into beautiful HTML.

Michael Conlon sent in a grammar correction in Chapter 2 and an improvement in style in Chapter 1,
and he initiated discussion on the technical aspects of interpreters.

Benoit Girard sent in a correction to a humorous mistake in Section 5.6.

Courtney Gleason and Katherine Smith wrote horsebet . py, which was used as a case study in an earlier
version of the book. Their program can now be found on the website.

Lee Harr submitted more corrections than we have room to list here, and indeed he should be listed as
one of the principal editors of the text.

James Kaylin is a student using the text. He has submitted numerous corrections.
David Kershaw fixed the broken catTwice function in Section 3.10.

Eddie Lam has sent in numerous corrections to Chapters 1, 2, and 3. He also fixed the Makefile so that
it creates an index the first time it is run and helped us set up a versioning scheme.

Man-Yong Lee sent in a correction to the example code in Section 2.4.

David Mayo pointed out that the word “unconsciously” in Chapter 1 needed to be changed to “subcon-
sciously”.

Chris McAloon sent in several corrections to Sections 3.9 and 3.10.

Matthew J. Moelter has been a long-time contributor who sent in numerous corrections and suggestions
to the book.

Simon Dicon Montford reported a missing function definition and several typos in Chapter 3. He also
found errors in the increment function in Chapter 13.

John Ouzts corrected the definition of “return value” in Chapter 3.

Kevin Parks sent in valuable comments and suggestions as to how to improve the distribution of the
book.

David Pool sent in a typo in the glossary of Chapter 1, as well as kind words of encouragement.
Michael Schmitt sent in a correction to the chapter on files and exceptions.

Robin Shaw pointed out an error in Section 13.1, where the printTime function was used in an example
without being defined.

Paul Sleigh found an error in Chapter 7 and a bug in Jonah Cohen’s Perl script that generates HTML
from LaTeX.

Craig T. Snydal is testing the text in a course at Drew University. He has contributed several valuable
suggestions and corrections.

Ian Thomas and his students are using the text in a programming course. They are the first ones to test
the chapters in the latter half of the book, and they have made numerous corrections and suggestions.

viii

Chapter 0. Preface

Keith Verheyden sent in a correction in Chapter 3.
Peter Winstanley let us know about a longstanding error in our Latin in Chapter 3.
Chris Wrobel made corrections to the code in the chapter on file I/O and exceptions.

Moshe Zadka has made invaluable contributions to this project. In addition to writing the first draft of
the chapter on Dictionaries, he provided continual guidance in the early stages of the book.

Christoph Zwerschke sent several corrections and pedagogic suggestions, and explained the difference
between gleich and selbe.

James Mayer sent us a whole slew of spelling and typographical errors, including two in the contributor
list.

Hayden McAfee caught a potentially confusing inconsistency between two examples.

Angel Arnal is part of an international team of translators working on the Spanish version of the text.
He has also found several errors in the English version.

Tauhidul Hoque and Lex Berezhny created the illustrations in Chapter 1 and improved many of the other
illustrations.

Dr. Michele Alzetta caught an error in Chapter 8 and sent some interesting pedagogic comments and
suggestions about Fibonacci and Old Maid.

Andy Mitchell caught a typo in Chapter 1 and a broken example in Chapter 2.

Kalin Harvey suggested a clarification in Chapter 7 and caught some typos.

Christopher P. Smith caught several typos and is helping us prepare to update the book for Python 2.2.
David Hutchins caught a typo in the Foreword.

Gregor Lingl is teaching Python at a high school in Vienna, Austria. He is working on a German
translation of the book, and he caught a couple of bad errors in Chapter 5.

Julie Peters caught a typo in the Preface.

Florin Oprina sent in an improvement in makeTime, a correction in printTime, and a nice typo.
D. J. Webre suggested a clarification in Chapter 3.

Ken found a fistful of errors in Chapters 8, 9 and 11.

Ivo Wever caught a typo in Chapter 5 and suggested a clarification in Chapter 3.

Curtis Yanko suggested a clarification in Chapter 2.

Ben Logan sent in a number of typos and problems with translating the book into HTML.
Jason Armstrong saw the missing word in Chapter 2.

Louis Cordier noticed a spot in Chapter 16 where the code didn’t match the text.

Brian Cain suggested several clarifications in Chapters 2 and 3.

Rob Black sent in a passel of corrections, including some changes for Python 2.2.

Jean-Philippe Rey at Ecole Centrale Paris sent a number of patches, including some updates for Python
2.2 and other thoughtful improvements.

Jason Mader at George Washington University made a number of useful suggestions and corrections.
Jan Gundtofte-Bruun reminded us that “a error” is an error.

Abel David and Alexis Dinno reminded us that the plural of “matrix” is “matrices”, not “matrixes”. This
error was in the book for years, but two readers with the same initials reported it on the same day. Weird.

Charles Thayer encouraged us to get rid of the semi-colons we had put at the ends of some statements
and to clean up our use of “argument” and “parameter”.

Roger Sperberg pointed out a twisted piece of logic in Chapter 3.
Sam Bull pointed out a confusing paragraph in Chapter 2.

Andrew Cheung pointed out two instances of “use before def.”

ix

C. Corey Capel spotted the missing word in the Third Theorem of Debugging and a typo in Chapter 4.
Alessandra helped clear up some Turtle confusion.

Wim Champagne found a brain-o in a dictionary example.

Douglas Wright pointed out a problem with floor division in arc.

Jared Spindor found some jetsam at the end of a sentence.

Lin Peiheng sent a number of very helpful suggestions.

Ray Hagtvedt sent in two errors and a not-quite-error.

Torsten Hiibsch pointed out an inconsistency in Swampy.

Inga Petuhhov corrected an example in Chapter 14.

Arne Babenhauserheide sent several helpful corrections.

Mark E. Casida is is good at spotting repeated words.

Scott Tyler filled in a that was missing. And then sent in a heap of corrections.
Gordon Shephard sent in several corrections, all in separate emails.

Andrew Turner spotted an error in Chapter 8.

Adam Hobart fixed a problem with floor division in arc.

Daryl Hammond and Sarah Zimmerman pointed out that I served up math.pi too early. And Zim
spotted a typo.

George Sass found a bug in a Debugging section.
Brian Bingham suggested Exercise 11.9.

Leah Engelbert-Fenton pointed out that I used tuple as a variable name, contrary to my own advice.
And then found a bunch of typos and a “use before def.”

Joe Funke spotted a typo.

Chao-chao Chen found an inconsistency in the Fibonacci example.
Jeff Paine knows the difference between space and spam.

Lubos Pintes sent in a typo.

Gregg Lind and Abigail Heithoff suggested Exercise 14.6.

Max Hailperin has sent in a number of corrections and suggestions. Max is one of the authors of the
extraordinary Concrete Abstractions, which you might want to read when you are done with this book.

Chotipat Pornavalai found an error in an error message.

Stanislaw Antol sent a list of very helpful suggestions.

Eric Pashman sent a number of corrections for Chapters 4—11.

Miguel Azevedo found some typos.

Jianhua Liu sent in a long list of corrections.

Nick King found a missing word.

Martin Zuther sent a long list of suggestions.

Adam Zimmerman found an inconsistency in my instance of an “instance” and several other errors.
Ratnakar Tiwari suggested a footnote explaining degenerate triangles.

Anurag Goel suggested another solution for is_abecedarian and sent some additional corrections.
And he knows how to spell Jane Austen.

Kelli Kratzer spotted one of the typos.

Mark Griffiths pointed out a confusing example in Chapter 3.
Roydan Ongie found an error in my Newton’s method.

Patryk Wolowiec helped me with a problem in the HTML version.
Mark Chonofsky told me about a new keyword in Python 3.0.
Russell Coleman helped me with my geometry.

Wei Huang spotted several typographical errors.

Karen Barber spotted the the oldest typo in the book.

Chapter 0. Preface

Contents

Preface

1 The way of the program

2

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

The Python programming language
Whatis aprogram?
What is debugging?
Formal and natural languages
The first program
Debugging
GlosSary e e e e

EXercises e

Variables, expressions and statements

2.1
2.2
23
24
25
2.6
2.7
2.8
29
2.10
2.11
2.12

Valuesand types L
Variables
Variable names and keywords L oL
Statements L
Operatorsand operands
EXpressions
Order of operations e
String operations e e e e e
Comments
Debugging
GloSSary e e e e e

EXercises e

xii Contents

3 Functions 17
3.1 Functioncalls 17
3.2 Typeconversion functions 17
33 Math functions 18
34 CompoSition e 19
35 Addingnew functions 19
3.6 Definitionsand useso 20
3.7 Flowofexecution 21
3.8 Parameters and arguments 21
39 Variables and parameters are local 22
3.10 Stackdiagrams 23
3.11 Fruitful functions and void functions 24
3.12 Why functions? e 25
3,13 Debugging e e e e 25
314 0 GloSsaryo e e e e 25
315 EXErcises 26

4 Case study: interface design 29
4.1 TurtleWorld 29
4.2 Simplerepetition 30
4.3 Exercises 31
44 Encapsulation 32
4.5 Generalization 32
4.6 Interfacedesign 33
477 Refactoring 34
4.8 Adevelopmentplan 35
4.9 docstring Lo e 35
410 Debugging 35
411 Glossary 36

412 EXEICISES v v i e e e e e 36

Contents

xiii

5 Conditionals and recursion

5.1

52

53

54

5.5

5.6

5.7

5.8

59

5.10

5.11

5.12

5.13

5.14

Modulus operator e e e
Boolean expressions
Logical operators
Conditional execution
Alternative eXxecution e e e
Chained conditionals
Nested conditionals
Recursion e
Stack diagrams for recursive functions
Infinite recursion e e
Keyboardinput L

Debugging e

6 Fruitful functions

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

Returnvalues
Incremental development L oL
Composition o e e e e e e e e e
Boolean functions
MoOre reCursiono e e
Leapoffaith
Onemoreexample
Checking types e
Debugging
Glossary e e e

Exercises e e

39

39

39

40

40

41

41

42

42

43

44

45

45

46

47

51

xiv Contents

7 Iteration 63
7.1 Multiple assignment 63
7.2 Updating variables o 64
7.3 The while statement i i it 64
7.4 break e 65
7.5 SQUare roots oL e 66
7.6 Algorithms 67
7.7 Debugging L e 68
7.8 GloSsary 68
7.9 EBXEICISES v v i i e 69

8 Strings 71
8.1 ASNZiSASEQUENCE v v v v e e e e e e e e e e e 71
8.2 1en oo 72
8.3 Traversal witha forloop 72
84 Stringslices 73
8.5 Strings are immutableo Lo 74
8.6 Searching 74
8.7 Loopingandcounting 75
8.8 stringmethods e 75
89 Theinoperator i 76
8.10 Stringcomparisonl 77
8.11 Debugging e e 77
A2 GlOSSArY v e e e e 79
813 EXErciSes o v it e e 79

9 Case study: word play 81
9.1 Readingword lists 81
9.2 EXEICISES . . . v v v 82
9.3 Search 83
9.4 Looping withindices e 84
9.5 Debugging 85
9.6 Glossary e 86

9.7 EXercises e 86

Contents XV
10 Lists 89
10.1 ATLStiSaSeqUENCE v v v v v e e e e e e e e e e e e e 89
10.2 Listsaremutable 89
10.3 Traversingalist L. 91
104 ListOoperations o v v vt e e e e e e e e 91
10.5 Listslices o e e 92
10.6 Listmethods e 92
10.7 Map, filterandreduce 93
10.8 Deletingelements e e 94
109 Listsand stringso e e 95
10.10 Objectsand values L 95
10.11 Aliasing L e 96
10.12 Listarguments v v v it e e e e e e e e e e e e e 97
10.13 Debugging e 98
10.14 Glossary e 99
10.15 EXercises o v v vt i e e e 100
11 Dictionaries 103
11.1 Dictionary as asetof counters 104
11.2 Looping and dictionaries i 106
113 Reverselookup o 106
11.4 Dictionaries and lists 107
11.5 Memos o oot e e e 109
11.6 Global variables e 110
117 Longinte@ers i v it e e e e 111
11.8 Debugging e 112
119 Glossary v o v e e e e e e 112
11.10 EXercises v v v v i it e e e e 113

Xvi Contents

12 Tuples 115
12.1 Tuplesareimmutable 115
12.2 Tuple assignment 116
12.3 Tuplesasreturnvalues e 117
12.4 Variable-length argument tuples 117
12,5 Listsandtuples 118
12.6 Dictionaries and tuples 119
12.7 Comparing tuples 121
12.8 Sequencesof sequencesol 122
129 Debugging e 122
12,10 Glossary oo o e e 123
1211 EXerciseso v v vt i e e e e e e 124

13 Case study: data structure selection 127
13.1 Word frequency analysis 127
13.2 Randomnumbers e 128
13.3 Word histogram 129
134 Mostcommon words e e 130
13.5 Optional parameters 130
13.6 Dictionary subtraction e 131
1377 Randomwords 131
13.8° Markovanalysis 132
13.9 DatastruCtures o v v v vt e e e e e e e e 133
13.10 Debugging e 134
13.11 Glossary oo v e e e 135
13.12 EXercises i e e 136

14 Files 137
14.1 Persistence. o e e e 137
142 Readingand writing 137
143 Format Operator v v v vt e e e e e 138

144 Filenamesandpaths Lo 139

Contents xvii
145 Catching exceptions ot e 140
14.6 Databases 141
147 Pickling e 141
148 Pipes o o e 142
149 Writingmodules 143
14.10 Debugging e 144
1411 GloSsary o v e e e e e e 145
14.12 EXercises 145

15 Classes and objects 147
15.1 User-defined types e 147
152 Attributes 148
153 Rectangles e 149
154 Instancesasreturnvalues 150
155 Objectsaremutable 150
156 Copying o o v 151
1577 Debugging e e 152
158 Glossary o o e 153
159 EXercises i e 153

16 Classes and functions 155
16.1 Time oo 155
16.2 Purefunctions 156
163 Modifiers 157
16.4 Prototyping versus planning oL 158
16.5 Debugging 159
16.6 GlosSary o i e e e e e 160
16.7 EXEICISes v v i it e e e e e 160

xviii Contents
17 Classes and methods 161
17.1 Object-oriented features 161
17.2 Printingobjects 162
17.3 Anotherexample 163
17.4 A more complicatedexample Lo 164
17.5 Theinitmethod 164
17.6 The __str__method 165
177 Operator overloading 165
17.8 Type-baseddispatch L 166
17.9 Polymorphism 167
17.10 Debugging e 168
I7.11 Glossary v o v e e e e e e e 168
17.12 EXEICISES . . . v v v v i i i e i e e e e e e e 169
18 Inheritance 171
181 Cardobjects e 171
182 Classattributes o e e e 172
183 Comparingcards e e e 173
184 Decks 174
18.5 Printingthedeck 174
18.6 Add, remove, shuffleandsort 175
187 Inheritance. 176
18.8 Classdiagrams 0 i i e e 177
189 Debugging e 178
18.10 Glossary o o v v e e 179
18.11 EXercises e 180
19 Case study: Tkinter 183
19.1 GUI e e 183
19.2 Buttonsandcallbacks L 184
193 Canvas widgets 185
19.4 Coordinate SEQUENCES o v v v et e e e e 186

Contents Xix

195 More widgets o e 186
19.6 Packing widgets e 187
19.7 Menusand Callables 190
19.8 Binding 191
19.9 Debugging 193
19.10 GlosSary o v v v e e e e e e 193
19.11 EXercises v v v v i it e e e 194
A Debugging 197
Al SYntax errors oo .o e e e e e e e e e 197
A2 Runtimeerrors 199

A3 SemantiC €ITors i e e e e e e e 201

XX

Contents

Chapter 1

The way of the program

The goal of this book is to teach you to think like a computer scientist. This way of thinking com-
bines some of the best features of mathematics, engineering, and natural science. Like mathemati-
cians, computer scientists use formal languages to denote ideas (specifically computations). Like
engineers, they design things, assembling components into systems and evaluating tradeoffs among
alternatives. Like scientists, they observe the behavior of complex systems, form hypotheses, and
test predictions.

The single most important skill for a computer scientist is problem solving. Problem solving means
the ability to formulate problems, think creatively about solutions, and express a solution clearly and
accurately. As it turns out, the process of learning to program is an excellent opportunity to practice
problem-solving skills. That’s why this chapter is called, “The way of the program.”

On one level, you will be learning to program, a useful skill by itself. On another level, you will use
programming as a means to an end. As we go along, that end will become clearer.

1.1 The Python programming language

The programming language you will learn is Python. Python is an example of a high-level language;
other high-level languages you might have heard of are C, C++, Perl, and Java.

There are also low-level languages, sometimes referred to as “machine languages” or “assembly
languages.” Loosely speaking, computers can only execute programs written in low-level languages.
So programs written in a high-level language have to be processed before they can run. This extra
processing takes some time, which is a small disadvantage of high-level languages.

The advantages are enormous. First, it is much easier to program in a high-level language. Programs
written in a high-level language take less time to write, they are shorter and easier to read, and they
are more likely to be correct. Second, high-level languages are portable, meaning that they can run
on different kinds of computers with few or no modifications. Low-level programs can run on only
one kind of computer and have to be rewritten to run on another.

Due to these advantages, almost all programs are written in high-level languages. Low-level lan-
guages are used only for a few specialized applications.

Two kinds of programs process high-level languages into low-level languages: interpreters and
compilers. An interpreter reads a high-level program and executes it, meaning that it does what the

2 Chapter 1. The way of the program

program says. It processes the program a little at a time, alternately reading lines and performing
computations.

%
SOURCE INTERPRETER OUTPUT
CODE L

O

A compiler reads the program and translates it completely before the program starts running. In this
context, the high-level program is called the source code, and the translated program is called the
object code or the executable. Once a program is compiled, you can execute it repeatedly without
further translation.

SOURCE COMPILER OBJECT EXECUTOR OUTPUT
CODE | cope [

/O

Python is considered an interpreted language because Python programs are executed by an inter-
preter. There are two ways to use the interpreter: interactive mode and script mode. In interactive
mode, you type Python programs and the interpreter prints the result:

>>> 1 + 1
2

The chevron, >>>, is the prompt the interpreter uses to indicate that it is ready. If you type 1 + 1,
the interpreter replies 2.

Alternatively, you can store code in a file and use the interpreter to execute the contents of the file,
which is called a script. By convention, Python scripts have names that end with . py.

To execute the script, you have to tell the interpreter the name of the file. In a UNIX command
window, you would type python dinsdale.py. In other development environments, the details of
executing scripts are different. You can find instructions for your environment at the Python Website
python.org.

Working in interactive mode is convenient for testing small pieces of code because you can type and
execute them immediately. But for anything more than a few lines, you should save your code as a
script so you can modify and execute it in the future.

1.2 What is a program?

A program is a sequence of instructions that specifies how to perform a computation. The compu-
tation might be something mathematical, such as solving a system of equations or finding the roots
of a polynomial, but it can also be a symbolic computation, such as searching and replacing text in
a document or (strangely enough) compiling a program.

The details look different in different languages, but a few basic instructions appear in just about
every language:

input: Get data from the keyboard, a file, or some other device.

1.3. What is debugging? 3

output: Display data on the screen or send data to a file or other device.
math: Perform basic mathematical operations like addition and multiplication.

conditional execution: Check for certain conditions and execute the appropriate sequence of state-
ments.

repetition: Perform some action repeatedly, usually with some variation.

Believe it or not, that’s pretty much all there is to it. Every program you’ve ever used, no matter
how complicated, is made up of instructions that look pretty much like these. So you can think of
programming as the process of breaking a large, complex task into smaller and smaller subtasks
until the subtasks are simple enough to be performed with one of these basic instructions.

That may be a little vague, but we will come back to this topic when we talk about algorithms.

1.3 What is debugging?

Programming is error-prone. For whimsical reasons, programming errors are called bugs and the
process of tracking them down is called debugging.

Three kinds of errors can occur in a program: syntax errors, runtime errors, and semantic errors. It
is useful to distinguish between them in order to track them down more quickly.

1.3.1 Syntax errors

Python can only execute a program if the syntax is correct; otherwise, the interpreter displays an
error message. Syntax refers to the structure of a program and the rules about that structure. For
example, parentheses have to come in matching pairs, so (1 + 2) islegal, but 8) is a syntax error.

In English readers can tolerate most syntax errors, which is why we can read the poetry of e. e.
cummings without spewing error messages. Python is not so forgiving. If there is a single syntax
error anywhere in your program, Python will display an error message and quit, and you will not be
able to run your program. During the first few weeks of your programming career, you will probably
spend a lot of time tracking down syntax errors. As you gain experience, you will make fewer errors
and find them faster.

1.3.2 Runtime errors

The second type of error is a runtime error, so called because the error does not appear until after the
program has started running. These errors are also called exceptions because they usually indicate
that something exceptional (and bad) has happened.

Runtime errors are rare in the simple programs you will see in the first few chapters, so it might be
a while before you encounter one.

4 Chapter 1. The way of the program

1.3.3 Semantic errors

The third type of error is the semantic error. If there is a semantic error in your program, it will
run successfully in the sense that the computer will not generate any error messages, but it will not
do the right thing. It will do something else. Specifically, it will do what you told it to do.

The problem is that the program you wrote is not the program you wanted to write. The meaning of
the program (its semantics) is wrong. Identifying semantic errors can be tricky because it requires
you to work backward by looking at the output of the program and trying to figure out what it is
doing.

1.3.4 Experimental debugging

One of the most important skills you will acquire is debugging. Although it can be frustrating,
debugging is one of the most intellectually rich, challenging, and interesting parts of programming.

In some ways, debugging is like detective work. You are confronted with clues, and you have to
infer the processes and events that led to the results you see.

Debugging is also like an experimental science. Once you have an idea about what is going wrong,
you modify your program and try again. If your hypothesis was correct, then you can predict the
result of the modification, and you take a step closer to a working program. If your hypothesis was
wrong, you have to come up with a new one. As Sherlock Holmes pointed out, “When you have
eliminated the impossible, whatever remains, however improbable, must be the truth.” (A. Conan
Doyle, The Sign of Four)

For some people, programming and debugging are the same thing. That is, programming is the
process of gradually debugging a program until it does what you want. The idea is that you should
start with a program that does something and make small modifications, debugging them as you go,
so that you always have a working program.

For example, Linux is an operating system that contains thousands of lines of code, but it started
out as a simple program Linus Torvalds used to explore the Intel 80386 chip. According to Larry
Greenfield, “One of Linus’s earlier projects was a program that would switch between printing
AAAA and BBBB. This later evolved to Linux.” (The Linux Users’ Guide Beta Version 1).

Later chapters will make more suggestions about debugging and other programming practices.

1.4 Formal and natural languages

Natural languages are the languages people speak, such as English, Spanish, and French. They
were not designed by people (although people try to impose some order on them); they evolved
naturally.

Formal languages are languages that are designed by people for specific applications. For example,
the notation that mathematicians use is a formal language that is particularly good at denoting rela-
tionships among numbers and symbols. Chemists use a formal language to represent the chemical
structure of molecules. And most importantly:

Programming languages are formal languages that have been designed to express
computations.

1.4. Formal and natural languages 5

Formal languages tend to have strict rules about syntax. For example, 3+ 3 = 6 is a syntactically cor-
rect mathematical statement, but 3+ = 3$6 is not. H,O is a syntactically correct chemical formula,
but 7z is not.

Syntax rules come in two flavors, pertaining to tokens and structure. Tokens are the basic elements
of the language, such as words, numbers, and chemical elements. One of the problems with 34 =
3$%6 is that $ is not a legal token in mathematics (at least as far as I know). Similarly, ,Zz is not legal
because there is no element with the abbreviation Zz.

The second type of syntax error pertains to the structure of a statement; that is, the way the tokens
are arranged. The statement 34+ = 3$6 is illegal because even though + and = are legal tokens, you
can’t have one right after the other. Similarly, in a chemical formula the subscript comes after the
element name, not before.

Exercise 1.1 Write a well-structured English sentence with invalid tokens in it. Then write another
sentence with all valid tokens but with invalid structure.

When you read a sentence in English or a statement in a formal language, you have to figure out
what the structure of the sentence is (although in a natural language you do this subconsciously).
This process is called parsing.

For example, when you hear the sentence, “The penny dropped,” you understand that “the penny”
is the subject and “dropped” is the predicate. Once you have parsed a sentence, you can figure out
what it means, or the semantics of the sentence. Assuming that you know what a penny is and what
it means to drop, you will understand the general implication of this sentence.

Although formal and natural languages have many features in common—tokens, structure, syntax,
and semantics—there are some differences:

ambiguity: Natural languages are full of ambiguity, which people deal with by using contextual
clues and other information. Formal languages are designed to be nearly or completely unam-
biguous, which means that any statement has exactly one meaning, regardless of context.

redundancy: In order to make up for ambiguity and reduce misunderstandings, natural languages
employ lots of redundancy. As a result, they are often verbose. Formal languages are less
redundant and more concise.

literalness: Natural languages are full of idiom and metaphor. If I say, “The penny dropped,” there
is probably no penny and nothing dropping'. Formal languages mean exactly what they say.

People who grow up speaking a natural language—everyone—often have a hard time adjusting to
formal languages. In some ways, the difference between formal and natural language is like the
difference between poetry and prose, but more so:

Poetry: Words are used for their sounds as well as for their meaning, and the whole poem together
creates an effect or emotional response. Ambiguity is not only common but often deliberate.

Prose: The literal meaning of words is more important, and the structure contributes more meaning.
Prose is more amenable to analysis than poetry but still often ambiguous.

Programs: The meaning of a computer program is unambiguous and literal, and can be understood
entirely by analysis of the tokens and structure.

!This idiom means that someone realized something after a period of confusion.

6 Chapter 1. The way of the program

Here are some suggestions for reading programs (and other formal languages). First, remember that
formal languages are much more dense than natural languages, so it takes longer to read them. Also,
the structure is very important, so it is usually not a good idea to read from top to bottom, left to
right. Instead, learn to parse the program in your head, identifying the tokens and interpreting the
structure. Finally, the details matter. Small errors in spelling and punctuation, which you can get
away with in natural languages, can make a big difference in a formal language.

1.5 The first program

Traditionally, the first program you write in a new language is called “Hello, World!” because all it
does is display the words, “Hello, World!” In Python, it looks like this:

print 'Hello, World!'

This is an example of a print statement”, which doesn’t actually print anything on paper. It displays
a value on the screen. In this case, the result is the words

Hello, World!

The quotation marks in the program mark the beginning and end of the text to be displayed; they
don’t appear in the result.

Some people judge the quality of a programming language by the simplicity of the “Hello, World!”
program. By this standard, Python does about as well as possible.

1.6 Debugging

It is a good idea to read this book in front of a computer so you can try out the examples as you
go. You can run most of the examples in interactive mode, but if you put the code into a script, it is
easier to try out variations.

Whenever you are experimenting with a new feature, you should try to make mistakes. For example,
in the “Hello, world!” program, what happens if you leave out one of the quotation marks? What if
you leave out both? What if you spell print wrong?

This kind of experiment helps you remember what you read; it also helps with debugging, because
you get to know what the error messages mean. It is better to make mistakes now and on purpose
than later and accidentally.

Programming, and especially debugging, sometimes brings out strong emotions. If you are strug-
gling with a difficult bug, you might feel angry, despondent or embarrassed.

There is evidence that people naturally respond to computers as if they were people’. When they
work well, we think of them as teammates, and when they are obstinate or rude, we respond to them
the same way we respond to rude, obstinate people.

Preparing for these reactions might help you deal with them. One approach is to think of the com-
puter as an employee with certain strengths, like speed and precision, and particular weaknesses,
like lack of empathy and inability to grasp the big picture.

2In Python 3.0, print is a function, not a statement, so the syntax is print (" Hello, World!’). We will get to functions
soon!

3See Reeves and Nass, The Media Equation: How People Treat Computers, Television, and New Media Like Real People
and Places.

1.7. Glossary 7

Your job is to be a good manager: find ways to take advantage of the strengths and mitigate the
weaknesses. And find ways to use your emotions to engage with the problem, without letting your
reactions interfere with your ability to work effectively.

Learning to debug can be frustrating, but it is a valuable skill that is useful for many activities
beyond programming. At the end of each chapter there is a debugging section, like this one, with
my thoughts about debugging. I hope they help!

1.7 Glossary

problem solving: The process of formulating a problem, finding a solution, and expressing the
solution.

high-level language: A programming language like Python that is designed to be easy for humans
to read and write.

low-level language: A programming language that is designed to be easy for a computer to execute;
also called “machine language” or “assembly language.”

portability: A property of a program that can run on more than one kind of computer.
interpret: To execute a program in a high-level language by translating it one line at a time.

compile: To translate a program written in a high-level language into a low-level language all at
once, in preparation for later execution.

source code: A program in a high-level language before being compiled.
object code: The output of the compiler after it translates the program.
executable: Another name for object code that is ready to be executed.

prompt: Characters displayed by the interpreter to indicate that it is ready to take input from the
user.

script: A program stored in a file (usually one that will be interpreted).

interactive mode: A way of using the Python interpreter by typing commands and expressions at
the prompt.

script mode: A way of using the Python interpreter to read and execute statements in a script.
program: A set of instructions that specifies a computation.

algorithm: A general process for solving a category of problems.

bug: An error in a program.

debugging: The process of finding and removing any of the three kinds of programming errors.
syntax: The structure of a program.

syntax error: An error in a program that makes it impossible to parse (and therefore impossible to
interpret).

exception: An error that is detected while the program is running.

8 Chapter 1. The way of the program

semantics: The meaning of a program.

semantic error: An error in a program that makes it do something other than what the programmer
intended.

natural language: Any one of the languages that people speak that evolved naturally.

formal language: Any one of the languages that people have designed for specific purposes, such
as representing mathematical ideas or computer programs; all programming languages are
formal languages.

token: One of the basic elements of the syntactic structure of a program, analogous to a word in a
natural language.

parse: To examine a program and analyze the syntactic structure.

print statement: An instruction that causes the Python interpreter to display a value on the screen.

1.8 Exercises

Exercise 1.2 Use a web browser to go to the Python Website python.org. This page contains
information about Python and links to Python-related pages, and it gives you the ability to search
the Python documentation.

For example, if you enter print in the search window, the first link that appears is the documentation
of the print statement. At this point, not all of it will make sense to you, but it is good to know
where it is.

Exercise 1.3 Start the Python interpreter and type help () to start the online help utility. Or you
can type help ('print') to get information about the print statement.

If this example doesn’t work, you may need to install additional Python documentation or set an
environment variable; the details depend on your operating system and version of Python.

Exercise 1.4 Start the Python interpreter and use it as a calculator. Python’s syntax for math oper-
ations is almost the same as standard mathematical notation. For example, the symbols +, - and /
denote addition, subtraction and division, as you would expect. The symbol for multiplication is *.

If you run a 10 kilometer race in 43 minutes 30 seconds, what is your average time per mile? What
is your average speed in miles per hour? (Hint: there are 1.61 kilometers in a mile).

Chapter 2

Variables, expressions and
statements

2.1 Values and types

A value is one of the basic things a program works with, like a letter or a number. The values we
have seen so far are 1, 2, and 'Hello, World!"'.

These values belong to different types: 2 is an integer, and 'Hello, World!' is a string, so-called
because it contains a “string” of letters. You (and the interpreter) can identify strings because they
are enclosed in quotation marks.

The print statement also works for integers.

>>> print 4
4

If you are not sure what type a value has, the interpreter can tell you.

>>> type('Hello, World!"')
<type 'str'>
>>> type (17)
<type 'int'>

Not surprisingly, strings belong to the type str and integers belong to the type int. Less obviously,
numbers with a decimal point belong to a type called f1loat, because these numbers are represented
in a format called floating-point.

>>> type(3.2)
<type 'float'>

What about values like '17" and '3.2'? They look like numbers, but they are in quotation marks
like strings.

>>> type('17")
<type 'str'>
>>> type('3.2")
<type 'str'>

10 Chapter 2. Variables, expressions and statements

They’re strings.

When you type a large integer, you might be tempted to use commas between groups of three digits,
asin 1,000, 000. This is not a legal integer in Python, but it is legal:

>>> print 1,000,000
100

Well, that’s not what we expected at all! Python interprets 1,000, 000 as a comma-separated se-
quence of integers, which it prints with spaces between.

This is the first example we have seen of a semantic error: the code runs without producing an error
message, but it doesn’t do the “right” thing.

2.2 Variables

One of the most powerful features of a programming language is the ability to manipulate variables.
A variable is a name that refers to a value.

An assignment statement creates new variables and gives them values:

>>> message = 'And now for something completely different’
>>>n = 17
>>> pi = 3.1415926535897931

This example makes three assignments. The first assigns a string to a new variable named message;
the second gives the integer 17 to n; the third assigns the (approximate) value of 7 to pi.

A common way to represent variables on paper is to write the name with an arrow pointing to the
variable’s value. This kind of figure is called a state diagram because it shows what state each of
the variables is in (think of it as the variable’s state of mind). This diagram shows the result of the
previous example:

message —= 'And now for something completely different’

n—— 17

pi —= 3.1415926535897931

To display the value of a variable, you can use a print statement:

>>> print n
17

>>> print pi
3.14159265359

The type of a variable is the type of the value it refers to.

>>> type (message)
<type 'str'>

>>> type (n)

<type 'int'>

>>> type (pi)
<type 'float'>

2.3. Variable names and keywords 11

Exercise 2.1 If you type an integer with a leading zero, you might get a confusing error:

>>> zipcode = 02492

SyntaxError: invalid token
Other numbers seem to work, but the results are bizarre:

>>> zipcode = 02132
>>> print zipcode
1114

Can you figure out what is going on? Hint: print the values 01, 010, 0100 and 01000.

2.3 Variable names and keywords

Programmers generally choose names for their variables that are meaningful—they document what
the variable is used for.

Variable names can be arbitrarily long. They can contain both letters and numbers, but they have to
begin with a letter. It is legal to use uppercase letters, but it is a good idea to begin variable names
with a lowercase letter (you’ll see why later).

The underscore character (_) can appear in a name. It is often used in names with multiple words,
such as my_name or airspeed_of_unladen_swallow.

If you give a variable an illegal name, you get a syntax error:

>>> T6trombones = 'big parade’
SyntaxError: invalid syntax

>>> more@ = 1000000

SyntaxError: invalid syntax

>>> class = 'Advanced Theoretical Zymurgy'
SyntaxError: invalid syntax

7T6trombones is illegal because it does not begin with a letter. more@ is illegal because it contains
an illegal character, @. But what’s wrong with class?

It turns out that class is one of Python’s keywords. The interpreter uses keywords to recognize the
structure of the program, and they cannot be used as variable names.

Python has 31 keywords!:

and del from not while
as elif global or with

assert else if pass yield
break except import print

class exec in raise

continue finally is return

def for lambda try

You might want to keep this list handy. If the interpreter complains about one of your variable names
and you don’t know why, see if it is on this list.

In Python 3.0, exec is no longer a keyword, but nonlocal is.

12 Chapter 2. Variables, expressions and statements

2.4 Statements

A statement is a unit of code that the Python interpreter can execute. We have seen two kinds of
statements: print and assignment.

When you type a statement in interactive mode, the interpreter executes it and displays the result, if
there is one.

A script usually contains a sequence of statements. If there is more than one statement, the results
appear one at a time as the statements execute.

For example, the script

print 1
X =2
print x

produces the output

1
2

The assignment statement produces no output.

2.5 Operators and operands

Operators are special symbols that represent computations like addition and multiplication. The
values the operator is applied to are called operands.

The operators +, -, *, / and ** perform addition, subtraction, multiplication, division and exponen-
tiation, as in the following examples:

20432 hour-1 hour*60+minute minute/60 5**2 (5+9) * (15-7)

In some other languages, " is used for exponentiation, but in Python it is a bitwise operator called
XOR. I won’t cover bitwise operators in this book, but you can read about them at wiki.python.
org/moin/BitwiseOperators.

The division operator might not do what you expect:

>>> minute = 59
>>> minute/60
0

The value of minute is 59, and in conventional arithmetic 59 divided by 60 is 0.98333, not 0. The

reason for the discrepancy is that Python is performing floor division?.

When both of the operands are integers, the result is also an integer; floor division chops off the
fraction part, so in this example it rounds down to zero.

If either of the operands is a floating-point number, Python performs floating-point division, and the
resultis a float:

>>> minute/60.0
0.98333333333333328

2In Python 3.0, the result of this division is a f1oat. The new operator // performs integer division.

2.6. Expressions 13

2.6 Expressions

An expression is a combination of values, variables, and operators. A value all by itself is considered
an expression, and so is a variable, so the following are all legal expressions (assuming that the
variable x has been assigned a value):

17
X
x + 17

If you type an expression in interactive mode, the interpreter evaluates it and displays the result:

>>> 1 + 1
2

But in a script, an expression all by itself doesn’t do anything! This is a common source of confusion
for beginners.

Exercise 2.2 Type the following statements in the Python interpreter to see what they do:

X X o
I
= o

Now put the same statements into a script and run it. What is the output? Modify the script by
transforming each expression into a print statement and then run it again.

2.7 Order of operations

When more than one operator appears in an expression, the order of evaluation depends on the rules
of precedence. For mathematical operators, Python follows mathematical convention. The acronym
PEMDAS is a useful way to remember the rules:

» Parentheses have the highest precedence and can be used to force an expression to evaluate in
the order you want. Since expressions in parentheses are evaluated first, 2 * (3-1) is 4, and
(1+1) ** (5-2) is 8. You can also use parentheses to make an expression easier to read, as in
(minute * 100) / 60, even if it doesn’t change the result.

* Exponentiation has the next highest precedence, so 2**1+1 is 3, not 4, and 3*1**3 is 3, not
27.

e Multiplication and Division have the same precedence, which is higher than Addition and
Subtraction, which also have the same precedence. So 2*3-1is 5, not 4, and 6+4/2 is 8, not
5.

* Operators with the same precedence are evaluated from left to right. So in the expression
degrees / 2 * pi, the division happens first and the result is multiplied by pi. To divide
by 27, you can reorder the operands or use parentheses.

14 Chapter 2. Variables, expressions and statements

2.8 String operations

In general, you cannot perform mathematical operations on strings, even if the strings look like
numbers, so the following are illegal:

'2'-'1t 'eggs'/'easy' 'third'*'a charm'’

The + operator works with strings, but it might not do what you expect: it performs concatenation,
which means joining the strings by linking them end-to-end. For example:

first = 'throat'
second = 'warbler'
print first + second

The output of this program is throatwarbler.

The * operator also works on strings; it performs repetition. For example, 'Spam'*3 is
' SpamSpamSpam ' . If one of the operands is a string, the other has to be an integer.

This use of + and * makes sense by analogy with addition and multiplication. Just as 4*3 is equiv-
alent to 4+4+4, we expect 'Spam'*3 to be the same as 'Spam'+'Spam'+"'Spam', and it is. On
the other hand, there is a significant way in which string concatenation and repetition are different
from integer addition and multiplication. Can you think of a property that addition has that string
concatenation does not?

2.9 Comments

As programs get bigger and more complicated, they get more difficult to read. Formal languages are
dense, and it is often difficult to look at a piece of code and figure out what it is doing, or why.

For this reason, it is a good idea to add notes to your programs to explain in natural language what
the program is doing. These notes are called comments, and they start with the # symbol:

compute the percentage of the hour that has elapsed
percentage = (minute * 100) / 60

In this case, the comment appears on a line by itself. You can also put comments at the end of a line:
percentage = (minute * 100) / 60 # percentage of an hour
Everything from the # to the end of the line is ignored—it has no effect on the program.

Comments are most useful when they document non-obvious features of the code. It is reasonable
to assume that the reader can figure out what the code does; it is much more useful to explain why.

This comment is redundant with the code and useless:

v=>5 # assign 5 to v

This comment contains useful information that is not in the code:
v=>5 # velocity in meters/second.

Good variable names can reduce the need for comments, but long names can make complex expres-
sions hard to read, so there is a tradeoff.

2.10. Debugging 15

2.10 Debugging

At this point the syntax error you are most likely to make is an illegal variable name, like class and
yield, which are keywords, or odd™ job and US$, which contain illegal characters.

If you put a space in a variable name, Python thinks it is two operands without an operator:

>>> bad name = 5
SyntaxError: invalid syntax

For syntax errors, the error messages don’t help much. The most common messages are
SyntaxError: invalid syntaxand SyntaxError: invalid token, neither of which is very
informative.

The runtime error you are most likely to make is a “use before def;” that is, trying to use a variable
before you have assigned a value. This can happen if you spell a variable name wrong:

>>> principal = 327.68
>>> interest = principle * rate
NameError: name 'principle' is not defined

Variables names are case sensitive, so LaTeX is not the same as latex.

At this point the most likely cause of a semantic error is the order of operations. For example, to
evaluate ﬁ, you might be tempted to write

>>> 1.0 / 2.0 * pi

But the division happens first, so you would get 7t/2, which is not the same thing! There is no way
for Python to know what you meant to write, so in this case you don’t get an error message; you just
get the wrong answer.

2.11 Glossary

value: One of the basic units of data, like a number or string, that a program manipulates.

type: A category of values. The types we have seen so far are integers (type int), floating-point
numbers (type float), and strings (type str).

integer: A type that represents whole numbers.

floating-point: A type that represents numbers with fractional parts.
string: A type that represents sequences of characters.

variable: A name that refers to a value.

statement: A section of code that represents a command or action. So far, the statements we have
seen are assignments and print statements.

assignment: A statement that assigns a value to a variable.
state diagram: A graphical representation of a set of variables and the values they refer to.

keyword: A reserved word that is used by the compiler to parse a program; you cannot use key-
words like if, def, and while as variable names.

16 Chapter 2. Variables, expressions and statements

operator: A special symbol that represents a simple computation like addition, multiplication, or
string concatenation.

operand: One of the values on which an operator operates.

floor division: The operation that divides two numbers and chops off the fraction part.
expression: A combination of variables, operators, and values that represents a single result value.
evaluate: To simplify an expression by performing the operations in order to yield a single value.

rules of precedence: The set of rules governing the order in which expressions involving multiple
operators and operands are evaluated.

concatenate: To join two operands end-to-end.

comment: Information in a program that is meant for other programmers (or anyone reading the
source code) and has no effect on the execution of the program.

2.12 Exercises

Exercise 2.3 Assume that we execute the following assignment statements:

width = 17
height = 12.0
delimiter = '.'

For each of the following expressions, write the value of the expression and the type (of the value of
the expression).

1. width/2

2. width/2.0
3. height/3
4.1+ 2 * 5

5. delimiter * 5

Use the Python interpreter to check your answers.
Exercise 2.4 Practice using the Python interpreter as a calculator:

4

1. The volume of a sphere with radius r is §7|:r3. What is the volume of a sphere with radius 5?

Hint: 392.6 is wrong!

2. Suppose the cover price of a book is $24.95, but bookstores get a 40% discount. Shipping
costs $3 for the first copy and 75 cents for each additional copy. What is the total wholesale
cost for 60 copies?

3. If I leave my house at 6:52 am and run 1 mile at an easy pace (8:15 per mile), then 3 miles at
tempo (7:12 per mile) and 1 mile at easy pace again, what time do I get home for breakfast?

Chapter 3

Functions

3.1 Function calls

In the context of programming, a function is a named sequence of statements that performs a com-
putation. When you define a function, you specify the name and the sequence of statements. Later,
you can “call” the function by name. We have already seen one example of a function call:

>>> type (32)
<type 'int'>

The name of the function is type. The expression in parentheses is called the argument of the
function. The result, for this function, is the type of the argument.

It is common to say that a function “takes” an argument and “returns” a result. The result is called
the return value.

3.2 Type conversion functions

Python provides built-in functions that convert values from one type to another. The int function
takes any value and converts it to an integer, if it can, or complains otherwise:

>>> int ('32"')

32
>>> int ('Hello"')
ValueError: invalid literal for int(): Hello

int can convert floating-point values to integers, but it doesn’t round off; it chops off the fraction
part:

>>> int (3.99999)
3

>>> int (-2.3)

-2

float converts integers and strings to floating-point numbers:

18 Chapter 3. Functions

>>> float (32)

32.0

>>> float ('3.14159")
3.14159

Finally, st r converts its argument to a string:

>>> str(32)

132'

>>> str(3.14159)
'3.14159"

3.3 Math functions

Python has a math module that provides most of the familiar mathematical functions. A module is
a file that contains a collection of related functions.

Before we can use the module, we have to import it:
>>> import math

This statement creates a module object named math. If you print the module object, you get some
information about it:

>>> print math
<module 'math' from '/usr/lib/python2.5/1lib-dynload/math.so'>

The module object contains the functions and variables defined in the module. To access one of the
functions, you have to specify the name of the module and the name of the function, separated by a
dot (also known as a period). This format is called dot notation.

>>> ratio = signal_power / noise_power
>>> decibels = 10 * math.loglO(ratio)

>>> radians = 0.7
>>> height = math.sin(radians)

The first example computes the logarithm base 10 of the signal-to-noise ratio. The math module
also provides a function called 1og that computes logarithms base e.

The second example finds the sine of radians. The name of the variable is a hint that sin and the
other trigonometric functions (cos, tan, etc.) take arguments in radians. To convert from degrees to
radians, divide by 360 and multiply by 2x:

>>> degrees = 45

>>> radians = degrees / 360.0 * 2 * math.pi
>>> math.sin(radians)

0.707106781187

The expression math.pi gets the variable pi from the math module. The value of this variable is an
approximation of T, accurate to about 15 digits.

If you know your trigonometry, you can check the previous result by comparing it to the square root
of two divided by two:

3.4. Composition 19

>>> math.sqrt (2) / 2.0
0.707106781187

3.4 Composition

So far, we have looked at the elements of a program—variables, expressions, and statements—in
isolation, without talking about how to combine them.

One of the most useful features of programming languages is their ability to take small building
blocks and compose them. For example, the argument of a function can be any kind of expression,
including arithmetic operators:

x = math.sin(degrees / 360.0 * 2 * math.pi)
And even function calls:
x = math.exp(math.log(x+1))

Almost anywhere you can put a value, you can put an arbitrary expression, with one exception: the
left side of an assignment statement has to be a variable name. Any other expression on the left side
is a syntax error!.

>>> minutes = hours * 60 # right
>>> hours * 60 = minutes # wrong!
SyntaxError: can't assign to operator

3.5 Adding new functions

So far, we have only been using the functions that come with Python, but it is also possible to add
new functions. A function definition specifies the name of a new function and the sequence of
statements that execute when the function is called.

Here is an example:

def print_lyrics():
print "I'm a lumberjack, and I'm okay."
print "I sleep all night and I work all day."

def is a keyword that indicates that this is a function definition. The name of the function is
print_lyrics. The rules for function names are the same as for variable names: letters, num-
bers and some punctuation marks are legal, but the first character can’t be a number. You can’t use a
keyword as the name of a function, and you should avoid having a variable and a function with the
same name.

The empty parentheses after the name indicate that this function doesn’t take any arguments.

The first line of the function definition is called the header; the rest is called the body. The header
has to end with a colon and the body has to be indented. By convention, the indentation is always
four spaces (see Section 3.13). The body can contain any number of statements.

'We will see exceptions to this rule later.

20 Chapter 3. Functions

The strings in the print statements are enclosed in double quotes. Single quotes and double quotes do
the same thing; most people use single quotes except in cases like this where a single quote (which
is also an apostrophe) appears in the string.

If you type a function definition in interactive mode, the interpreter prints ellipses (...) to let you
know that the definition isn’t complete:

>>> def print_lyrics():
print "I'm a lumberjack, and I'm okay."
print "I sleep all night and I work all day."

To end the function, you have to enter an empty line (this is not necessary in a script).
Defining a function creates a variable with the same name.

>>> print print_lyrics

<function print_lyrics at 0xb7e¢99%e9c>
>>> print type(print_lyrics)

<type 'function'>

The value of print_lyrics is a function object, which has type ' function'.
The syntax for calling the new function is the same as for built-in functions:

>>> print_lyrics()
I'm a lumberjack, and I'm okay.
I sleep all night and I work all day.

Once you have defined a function, you can use it inside another function. For example, to repeat the
previous refrain, we could write a function called repeat_lyrics:

def repeat_lyrics():
print_lyrics()
print_lyrics()

And then call repeat_lyrics:

>>> repeat_lyrics()

I'm a lumberjack, and I'm okay.

I sleep all night and I work all day.
I'm a lumberjack, and I'm okay.

I sleep all night and I work all day.

But that’s not really how the song goes.

3.6 Definitions and uses

Pulling together the code fragments from the previous section, the whole program looks like this:

def print_lyrics():
print "I'm a lumberjack, and I'm okay."
print "I sleep all night and I work all day."

3.7. Flow of execution 21

def repeat_lyrics():
print_lyrics()
print_lyrics()

repeat_lyrics()

This program contains two function definitions: print_lyrics and repeat_lyrics. Function
definitions get executed just like other statements, but the effect is to create function objects. The
statements inside the function do not get executed until the function is called, and the function
definition generates no output.

As you might expect, you have to create a function before you can execute it. In other words, the
function definition has to be executed before the first time it is called.

Exercise 3.1 Move the last line of this program to the top, so the function call appears before the
definitions. Run the program and see what error message you get.

Exercise 3.2 Move the function call back to the bottom and move the definition of print_lyrics
after the definition of repeat_lyrics. What happens when you run this program?

3.7 Flow of execution

In order to ensure that a function is defined before its first use, you have to know the order in which
statements are executed, which is called the flow of execution.

Execution always begins at the first statement of the program. Statements are executed one at a time,
in order from top to bottom.

Function definitions do not alter the flow of execution of the program, but remember that statements
inside the function are not executed until the function is called.

A function call is like a detour in the flow of execution. Instead of going to the next statement, the
flow jumps to the body of the function, executes all the statements there, and then comes back to
pick up where it left off.

That sounds simple enough, until you remember that one function can call another. While in the
middle of one function, the program might have to execute the statements in another function. But
while executing that new function, the program might have to execute yet another function!

Fortunately, Python is good at keeping track of where it is, so each time a function completes, the
program picks up where it left off in the function that called it. When it gets to the end of the
program, it terminates.

What’s the moral of this sordid tale? When you read a program, you don’t always want to read from
top to bottom. Sometimes it makes more sense if you follow the flow of execution.

3.8 Parameters and arguments

Some of the built-in functions we have seen require arguments. For example, when you call
math.sin you pass a number as an argument. Some functions take more than one argument:
math.pow takes two, the base and the exponent.

22 Chapter 3. Functions

Inside the function, the arguments are assigned to variables called parameters. Here is an example
of a user-defined function that takes an argument:

def print_twice (bruce):
print bruce
print bruce

This function assigns the argument to a parameter named bruce. When the function is called, it
prints the value of the parameter (whatever it is) twice.

This function works with any value that can be printed.

>>> print_twice('Spam')
Spam

Spam

>>> print_twice(17)

17

17

>>> print_twice (math.pi)
3.14159265359
3.14159265359

The same rules of composition that apply to built-in functions also apply to user-defined functions,
so we can use any kind of expression as an argument for print_twice:

>>> print_twice ('Spam '*4)

Spam Spam Spam Spam

Spam Spam Spam Spam

>>> print_twice (math.cos(math.pi))

The argument is evaluated before the function is called, so in the examples the expressions
'Spam '*4 and math.cos (math.pi) are only evaluated once.

You can also use a variable as an argument:

>>> michael = 'Eric, the half a bee.'
>>> print_twice (michael)

Eric, the half a bee.

Eric, the half a bee.

The name of the variable we pass as an argument (michael) has nothing to do with the name of the
parameter (bruce). It doesn’t matter what the value was called back home (in the caller); here in
print_twice, we call everybody bruce.

3.9 Variables and parameters are local

When you create a variable inside a function, it is local, which means that it only exists inside the
function. For example:

def cat_twice(partl, part2):
cat = partl + part2
print_twice(cat)

3.10. Stack diagrams 23

This function takes two arguments, concatenates them, and prints the result twice. Here is an exam-
ple that uses it:

>>> linel = 'Bing tiddle '
>>> line2 = 'tiddle bang.'
>>> cat_twice(linel, line2)
Bing tiddle tiddle bang.
Bing tiddle tiddle bang.

When cat_twice terminates, the variable cat is destroyed. If we try to print it, we get an exception:

>>> print cat
NameError: name 'cat' is not defined

Parameters are also local. For example, outside print_twice, there is no such thing as bruce.

3.10 Stack diagrams

To keep track of which variables can be used where, it is sometimes useful to draw a stack diagram.
Like state diagrams, stack diagrams show the value of each variable, but they also show the function
each variable belongs to.

Each function is represented by a frame. A frame is a box with the name of a function beside it and
the parameters and variables of the function inside it. The stack diagram for the previous example
looks like this:

_ linel —= 'Bing tiddle’
__main__
line2 —= ’tiddle bang.’

partl1 —= ’Bing tiddle ’
cat_twice part2 —= ’tiddle bang.’
cat —= ’Bing tiddle tiddle bang.’

print_twice bruce —= ’Bing tiddle tiddle bang.’

The frames are arranged in a stack that indicates which function called which, and so on. In this
example, print_twice was called by cat_twice, and cat_twice was called by __main__, which
is a special name for the topmost frame. When you create a variable outside of any function, it
belongs to __main_ .

Each parameter refers to the same value as its corresponding argument. So, partl has the same
value as 1inel, part2 has the same value as 1ine2, and bruce has the same value as cat.

If an error occurs during a function call, Python prints the name of the function, and the name of the
function that called it, and the name of the function that called that, all the way back to __main__.

For example, if you try to access cat from within print_twice, you get a NameError:

24 Chapter 3. Functions

Traceback (innermost last):
File "test.py", line 13, in __main__
cat_twice(linel, line2)
File "test.py", line 5, in cat_twice
print_twice(cat)
File "test.py", line 9, in print_twice
print cat
NameError: name 'cat' is not defined

This list of functions is called a traceback. It tells you what program file the error occurred in, and
what line, and what functions were executing at the time. It also shows the line of code that caused
the error.

The order of the functions in the traceback is the same as the order of the frames in the stack diagram.
The function that is currently running is at the bottom.

3.11 Fruitful functions and void functions

Some of the functions we are using, such as the math functions, yield results; for lack of a better
name, I call them fruitful functions. Other functions, like print_twice, perform an action but
don’t return a value. They are called void functions.

When you call a fruitful function, you almost always want to do something with the result; for
example, you might assign it to a variable or use it as part of an expression:

x = math.cos(radians)
golden = (math.sqrt(5) + 1) / 2

When you call a function in interactive mode, Python displays the result:

>>> math.sqrt (5)
2.2360679774997898

But in a script, if you call a fruitful function all by itself, the return value is lost forever!
math.sqrt (5)

This script computes the square root of 5, but since it doesn’t store or display the result, it is not very
useful.

Void functions might display something on the screen or have some other effect, but they don’t have
a return value. If you try to assign the result to a variable, you get a special value called None.

>>> result = print_twice('Bing')
Bing

Bing

>>> print result

None

The value None is not the same as the string 'None'. It is a special value that has its own type:

>>> print type (None)
<type 'NoneType'>

The functions we have written so far are all void. We will start writing fruitful functions in a few
chapters.

3.12. Why functions? 25

3.12 Why functions?

It may not be clear why it is worth the trouble to divide a program into functions. There are several
reasons:

* Creating a new function gives you an opportunity to name a group of statements, which makes
your program easier to read and debug.

 Functions can make a program smaller by eliminating repetitive code. Later, if you make a
change, you only have to make it in one place.

* Dividing a long program into functions allows you to debug the parts one at a time and then
assemble them into a working whole.

* Well-designed functions are often useful for many programs. Once you write and debug one,
you can reuse it.

3.13 Debugging

If you are using a text editor to write your scripts, you might run into problems with spaces and tabs.
The best way to avoid these problems is to use spaces exclusively (no tabs). Most text editors that
know about Python do this by default, but some don’t.

Tabs and spaces are usually invisible, which makes them hard to debug, so try to find an editor that
manages indentation for you.

Also, don’t forget to save your program before you run it. Some development environments do this
automatically, but some don’t. In that case the program you are looking at in the text editor is not
the same as the program you are running.

Debugging can take a long time if you keep running the same, incorrect, program over and over!

Make sure that the code you are looking at is the code you are running. If you’re not sure, put
something like print 'hello' at the beginning of the program and run it again. If you don’t see
hello, you’re not running the right program!

3.14 Glossary

function: A named sequence of statements that performs some useful operation. Functions may or
may not take arguments and may or may not produce a result.

function definition: A statement that creates a new function, specifying its name, parameters, and
the statements it executes.

function object: A value created by a function definition. The name of the function is a variable
that refers to a function object.

header: The first line of a function definition.
body: The sequence of statements inside a function definition.

parameter: A name used inside a function to refer to the value passed as an argument.

26 Chapter 3. Functions

function call: A statement that executes a function. It consists of the function name followed by an
argument list.

argument: A value provided to a function when the function is called. This value is assigned to the
corresponding parameter in the function.

local variable: A variable defined inside a function. A local variable can only be used inside its
function.

return value: The result of a function. If a function call is used as an expression, the return value
is the value of the expression.

fruitful function: A function that returns a value.

void function: A function that doesn’t return a value.

module: A file that contains a collection of related functions and other definitions.
import statement: A statement that reads a module file and creates a module object.

module object: A value created by an import statement that provides access to the values defined
in a module.

dot notation: The syntax for calling a function in another module by specifying the module name
followed by a dot (period) and the function name.

composition: Using an expression as part of a larger expression, or a statement as part of a larger
statement.

flow of execution: The order in which statements are executed during a program run.

stack diagram: A graphical representation of a stack of functions, their variables, and the values
they refer to.

frame: A box in a stack diagram that represents a function call. It contains the local variables and
parameters of the function.

traceback: A list of the functions that are executing, printed when an exception occurs.

3.15 Exercises

Exercise 3.3 Python provides a built-in function called 1en that returns the length of a string, so the
value of len('allen') is 5.

Write a function named right_Jjustify that takes a string named s as a parameter and prints the
string with enough leading spaces so that the last letter of the string is in column 70 of the display.

>>> right_justify('allen')
allen

Exercise 3.4 A function object is a value you can assign to a variable or pass as an argument. For
example, do_twice is a function that takes a function object as an argument and calls it twice:

def do_twice(f):
()
()

3.15.

Exercises 27

Here’s an example that uses do_twice to call a function named print_spam twice.

def print_spam():

print 'spam'

do_twice (print_spam)

1.
2.

Type this example into a script and test it.

Modify do_twice so that it takes two arguments, a function object and a value, and calls the
function twice, passing the value as an argument.

Write a more general version of print_spam, called print_twice, that takes a string as a
parameter and prints it twice.

Use the modified version of do_twice to call print_twice twice, passing 'spam' as an
argument.

Define a new function called do_four that takes a function object and a value and calls the
function four times, passing the value as a parameter. There should be only two statements in
the body of this function, not four.

You can see my solution at thinkpython.com/code/do_four.py.

Exercise 3.5 This exercise

2 can be done using only the statements and other features we have

learned so far.

1.

Write a function that draws a grid like the following:

e T
\ | |
\ | |
\ | |
\ | |
e T
\ | |
\ | |
\ | |
\ | |
e T

Hint: to print more than one value on a line, you can print a comma-separated sequence:
print '+', '-!'

If the sequence ends with a comma, Python leaves the line unfinished, so the value printed
next appears on the same line.

print '+',
print '-!'

The output of these statements is "+ -"'.

A print statement all by itself ends the current line and goes to the next line.

2Based on an exercise in Oualline, Practical C Programming, Third Edition, O’Reilly (1997)

28 Chapter 3. Functions

2. Use the previous function to draw a similar grid with four rows and four columns.

You can see my solution at thinkpython.com/code/grid.py.

Chapter 4

Case study: interface design

4.1 TuartleWorld

To accompany this book, I have written a suite of modules called Swampy. One of these modules
is TurtleWorld, which provides a set of functions for drawing lines by steering turtles around the
screen.

You can download Swampy from thinkpython.com/swampy; follow the instructions there to install
Swampy on your system.

Move into the directory that contains TurtleWorld.py, create a file named polygon.py and type
in the following code:

from TurtleWorld import *

world = TurtleWorld()
bob = Turtle()
print bob

wait_for_user()

The first line is a variation of the import statement we saw before; instead of creating a module
object, it imports the functions from the module directly, so you can access them without using dot
notation.

The next lines create a TurtleWorld assigned to world and a Turtle assigned to bob. Printing bob
yields something like:

<TurtleWorld.Turtle instance at Oxb7bfbfdc>

This means that bob refers to an instance of a Turtle as defined in module TurtleWorld. In this
context, “instance” means a member of a set; this Turtle is one of the set of possible Turtles.

wait_for_user tells TurtleWorld to wait for the user to do something, although in this case there’s
not much for the user to do except close the window.

TurtleWorld provides several turtle-steering functions: £d and bk for forward and backward, and 1t
and rt for left and right turns. Also, each Turtle is holding a pen, which is either down or up; if the

30 Chapter 4. Case study: interface design

pen is down, the Turtle leaves a trail when it moves. The functions pu and pd stand for “pen up” and
“pen down.”

To draw a right angle, add these lines to the program (after creating bob and before calling
wait_for_user):

fd(bob, 100)
rt (bob)
fd (bob, 100)

The first line tells bob to take 100 steps forward. The second line tells him to turn right.

When you run this program, you should see bob move east and then south, leaving two line segments
behind.

Now modify the program to draw a square. Don’t go on until you’ve got it working!

4.2 Simple repetition

Chances are you wrote something like this (leaving out the code that creates TurtleWorld and waits
for the user):

fd(bob, 100)
1t (bob)

fd (bob, 100)
1t (bob)

fd(bob, 100)
1t (bob)

fd(bob, 100)

We can do the same thing more concisely with a for statement. Add this example to polygon.py
and run it again:

for i in range(4):
print 'Hello!'

You should see something like this:

Hello!
Hello!
Hello!
Hello!

This is the simplest use of the for statement; we will see more later. But that should be enough to
let you rewrite your square-drawing program. Don’t go on until you do.

Here is a for statement that draws a square:

for i in range(4):
fd (bob, 100)
1t (bob)

4.3. Exercises 31

The syntax of a for statement is similar to a function definition. It has a header that ends with a
colon and an indented body. The body can contain any number of statements.

A for statement is sometimes called a loop because the flow of execution runs through the body
and then loops back to the top. In this case, it runs the body four times.

This version is actually a little different from the previous square-drawing code because it makes
another left turn after drawing the last side of the square. The extra turn takes a little more time, but
it simplifies the code if we do the same thing every time through the loop. This version also has the
effect of leaving the turtle back in the starting position, facing in the starting direction.

4.3 Exercises

The following is a series of exercises using TurtleWorld. They are meant to be fun, but they have a
point, too. While you are working on them, think about what the point is.

The following sections have solutions to the exercises, so don’t look until you have finished (or at
least tried).

1. Write a function called square that takes a parameter named t, which is a turtle. It should
use the turtle to draw a square.

Write a function call that passes bob as an argument to square, and then run the program
again.

2. Add another parameter, named length, to square. Modify the body so length of the sides is
length, and then modify the function call to provide a second argument. Run the program
again. Test your program with a range of values for length.

3. The functions 1t and rt make 90-degree turns by default, but you can provide a second
argument that specifies the number of degrees. For example, 1t (bob, 45) turns bob 45
degrees to the left.

Make a copy of square and change the name to polygon. Add another parameter named n
and modify the body so it draws an n-sided regular polygon. Hint: The exterior angles of an
n-sided regular polygon are 360.0/n degrees.

4. Write a function called circle that takes a turtle, t, and radius, r, as parameters and that
draws an approximate circle by invoking polygon with an appropriate length and number of
sides. Test your function with a range of values of r.

Hint: figure out the circumference of the circle and make sure that length * n =
circumference.

Another hint: if bob is too slow for you, you can speed him up by changing bob.delay, which
is the time between moves, in seconds. bob.delay = 0.01 ought to get him moving.

5. Make a more general version of circle called arc that takes an additional parameter angle,
which determines what fraction of a circle to draw. angle is in units of degrees, so when
angle=360, arc should draw a complete circle.

32 Chapter 4. Case study: interface design

4.4 Encapsulation

The first exercise asks you to put your square-drawing code into a function definition and then call
the function, passing the turtle as a parameter. Here is a solution:

def square(t):
for i in range(4):
fd(t, 100)
1t (t)

square (bob)

The innermost statements, £d and 1t are indented twice to show that they are inside the for loop,
which is inside the function definition. The next line, square (bob), is flush with the left margin, so
that is the end of both the for loop and the function definition.

Inside the function, t refers to the same turtle bob refers to, so 1t (t) has the same effect as 1t (bob).
So why not call the parameter bob? The idea is that t can be any turtle, not just bob, so you could
create a second turtle and pass it as an argument to square:

ray = Turtle()
square (ray)

Wrapping a piece of code up in a function is called encapsulation. One of the benefits of encap-
sulation is that it attaches a name to the code, which serves as a kind of documentation. Another
advantage is that if you re-use the code, it is more concise to call a function twice than to copy and
paste the body!

4.5 Generalization

The next step is to add a length parameter to square. Here is a solution:

def square(t, length):
for i in range(4):
fd(t, length)
1t (t)

square (bob, 100)

Adding a parameter to a function is called generalization because it makes the function more gen-
eral: in the previous version, the square is always the same size; in this version it can be any size.

The next step is also a generalization. Instead of drawing squares, polygon draws regular polygons
with any number of sides. Here is a solution:

def polygon(t, n, length):
angle = 360.0 / n
for i in range(n):
fd(t, length)
1t (t, angle)

polygon (bob, 7, 70)

4.6. Interface design 33

This draws a 7-sided polygon with side length 70. If you have more than a few numeric arguments,
it is easy to forget what they are, or what order they should be in. It is legal, and sometimes helpful,
to include the names of the parameters in the argument list:

polygon (bob, n=7, length=70)

These are called keyword arguments because they include the parameter names as “keywords” (not
to be confused with Python keywords like while and def).

This syntax makes the program more readable. It is also a reminder about how arguments and
parameters work: when you call a function, the arguments are assigned to the parameters.

4.6 Interface design

The next step is to write circle, which takes a radius, r, as a parameter. Here is a simple solution
that uses polygon to draw a 50-sided polygon:

def circle(t, r):
circumference = 2 * math.pi * r
n = 50
length = circumference / n
polygon(t, n, length)

The first line computes the circumference of a circle with radius r using the formula 27r. Since
we use math.pi, we have to import math. By convention, import statements are usually at the
beginning of the script.

n is the number of line segments in our approximation of a circle, so length is the length of each
segment. Thus, polygon draws a 50-sides polygon that approximates a circle with radius r.

One limitation of this solution is that n is a constant, which means that for very big circles, the
line segments are too long, and for small circles, we waste time drawing very small segments. One
solution would be to generalize the function by taking n as a parameter. This would give the user
(whoever calls circle) more control, but the interface would be less clean.

The interface of a function is a summary of how it is used: what are the parameters? What does the
function do? And what is the return value? An interface is “clean” if it is “as simple as possible, but
not simpler. (Einstein)”

In this example, r belongs in the interface because it specifies the circle to be drawn. n is less
appropriate because it pertains to the details of how the circle should be rendered.

Rather than clutter up the interface, it is better to choose an appropriate value of n depending on
circumference:

def circle(t, r):
circumference = 2 * math.pi * r
n = int (circumference / 3) + 1
length = circumference / n
polygon(t, n, length)

Now the number of segments is (approximately) circumference/3, so the length of each segment
is (approximately) 3, which is small enough that the circles look good, but big enough to be efficient,
and appropriate for any size circle.

34 Chapter 4. Case study: interface design

4.7 Refactoring

When I wrote circle, I was able to re-use polygon because a many-sided polygon is a good ap-
proximation of a circle. But arc is not as cooperative; we can’t use polygon or circle to draw an
arc.

One alternative is to start with a copy of polygon and transform it into arc. The result might look
like this:

def arc(t, r, angle):
arc_length = 2 * math.pi * r * angle / 360
n = int(arc_length / 3) + 1
step_length = arc_length / n
step_angle = float (angle) / n

for i in range(n):
fd(t, step_length)
1t (t, step_angle)

The second half of this function looks like polygon, but we can’t re-use polygon without changing
the interface. We could generalize polygon to take an angle as a third argument, but then polygon
would no longer be an appropriate name! Instead, let’s call the more general function polyline:

def polyline(t, n, length, angle):
for i in range(n):
fd(t, length)
1t (t, angle)

Now we can rewrite polygon and arc to use polyline:

def polygon(t, n, length):
angle = 360.0 / n
polyline(t, n, length, angle)

def arc(t, r, angle):
arc_length = 2 * math.pi * r * angle / 360
n = int(arc_length / 3) + 1
step_length = arc_length / n
step_angle = float(angle) / n
polyline(t, n, step_length, step_angle)

Finally, we can rewrite circle to use arc:

def circle(t, r):
arc(t, r, 360)

This process—rearranging a program to improve function interfaces and facilitate code re-use—is
called refactoring. In this case, we noticed that there was similar code in arc and polygon, so we
“factored it out” into polyline.

If we had planned ahead, we might have written polyline first and avoided refactoring, but often
you don’t know enough at the beginning of a project to design all the interfaces. Once you start
coding, you understand the problem better. Sometimes refactoring is a sign that you have learned
something.

4.8. A development plan 35

4.8 A development plan

A development plan is a process for writing programs. The process we used in this case study is
“encapsulation and generalization.” The steps of this process are:

1. Start by writing a small program with no function definitions.
2. Once you get the program working, encapsulate it in a function and give it a name.
3. Generalize the function by adding appropriate parameters.

4. Repeat steps 1-3 until you have a set of working functions. Copy and paste working code to
avoid retyping (and re-debugging).

5. Look for opportunities to improve the program by refactoring. For example, if you have
similar code in several places, consider factoring it into an appropriately general function.

This process has some drawbacks—we will see alternatives later—but it can be useful if you don’t
know ahead of time how to divide the program into functions. This approach lets you design as you
go along.

4.9 docstring

A docstring is a string at the beginning of a function that explains the interface (“doc” is short for
“documentation”). Here is an example:

def polyline(t, length, n, angle):
"""Draw n line segments with the given length and
angle (in degrees) between them. t is a turtle.
nmnn
for 1 in range(n):
fd(t, length)
1t (t, angle)

This docstring is a triple-quoted string, also known as a multiline string because the triple quotes
allow the string to span more than one line.

It is terse, but it contains the essential information someone would need to use this function. It
explains concisely what the function does (without getting into the details of how it does it). It
explains what effect each parameter has on the behavior of the function and what type each parameter
should be (if it is not obvious).

Writing this kind of documentation is an important part of interface design. A well-designed inter-
face should be simple to explain; if you are having a hard time explaining one of your functions, that
might be a sign that the interface could be improved.

4.10 Debugging

An interface is like a contract between a function and a caller. The caller agrees to provide certain
parameters and the function agrees to do certain work.

36 Chapter 4. Case study: interface design

For example, polyline requires four arguments. The first has to be a Turtle (or some other object
that works with fd and 1t). The second has to be a number, and it should probably be positive,
although it turns out that the function works even if it isn’t. The third argument should be an integer;
range complains otherwise (depending on which version of Python you are running). The fourth
has to be a number, which is understood to be in degrees.

These requirements are called preconditions because they are supposed to be true before the func-
tion starts executing. Conversely, conditions at the end of the function are postconditions. Postcon-
ditions include the intended effect of the function (like drawing line segments) and any side effects
(like moving the Turtle or making other changes in the World).

Preconditions are the responsibility of the caller. If the caller violates a (properly documented!)
precondition and the function doesn’t work correctly, the bug is in the caller, not the function. How-
ever, for purposes of debugging it is often a good idea for functions to check their preconditions
rather than assume they are true. If every function checks its preconditions before starting, then if
something goes wrong, you will know which function to blame.

4.11 Glossary

instance: A member of a set. The TurtleWorld in this chapter is a member of the set of Turtle-
Worlds.

loop: A part of a program that can execute repeatedly.
encapsulation: The process of transforming a sequence of statements into a function definition.

generalization: The process of replacing something unnecessarily specific (like a number) with
something appropriately general (like a variable or parameter).

keyword argument: An argument that includes the name of the parameter as a “keyword.”

interface: A description of how to use a function, including the name and descriptions of the argu-
ments and return value.

development plan: A process for writing programs.
docstring: A string that appears in a function definition to document the function’s interface.
precondition: A requirement that should be satisfied by the caller before a function starts.

postcondition: A requirement that should be satisfied by the function before it ends.

4.12 Exercises

Exercise 4.1 Download the code in this chapter from thinkpython.com/code/polygon.py.

1. Write appropriate docstrings for polygon, arc and circle.

2. Draw a stack diagram that shows the state of the program while executing circle (bob,
radius). You can do the arithmetic by hand or add print statements to the code.

4.12. Exercises 37

3. The version of arc in Section 4.7 is not very accurate because the linear approximation of the
circle is always outside the true circle. As a result, the turtle ends up a few units away from
the correct destination. My solution shows a way to reduce the effect of this error. Read the
code and see if it makes sense to you. If you draw a diagram, you might see how it works.

Exercise 4.2 Write an appropriately general set of functions that can draw flowers like this:

You can download a solution from thinkpython.com/code/flower.py.

Exercise 4.3 Write an appropriately general set of functions that can draw shapes like this:

KIERE

You can download a solution from thinkpython.com/code/pie.py.

Exercise 4.4 The letters of the alphabet can be constructed from a moderate number of basic ele-
ments, like vertical and horizontal lines and a few curves. Design a font that can be drawn with a
minimal number of basic elements and then write functions that draw letters of the alphabet.

You should write one function for each letter, with names draw_a, draw_b, etc., and put your func-
tions in a file named letters.py. You can download a “turtle typewriter” from thinkpython.
com/code/typewriter.py to help you test your code.

You can download a solution from thinkpython.com/code/letters.py.

38

Chapter 4. Case study: interface design

Chapter 5

Conditionals and recursion

5.1 Modulus operator

The modulus operator works on integers and yields the remainder when the first operand is divided
by the second. In Python, the modulus operator is a percent sign (%). The syntax is the same as for
other operators:

>>> quotient = 7 / 3
>>> print quotient

2

>>> remainder = 7 % 3
>>> print remainder

1

So 7 divided by 3 is 2 with 1 left over.

The modulus operator turns out to be surprisingly useful. For example, you can check whether one
number is divisible by another—if x % y is zero, then x is divisible by y.

Also, you can extract the right-most digit or digits from a number. For example, x % 10 yields the
right-most digit of x (in base 10). Similarly x % 100 yields the last two digits.

5.2 Boolean expressions

A boolean expression is an expression that is either true or false. The following examples use

the operator ==, which compares two operands and produces True if they are equal and False
otherwise:

>>> == 5

True

>>> 5 == 6

False

True and False are special values that belong to the type bool; they are not strings:

40 Chapter 5. Conditionals and recursion

>>> type (True)
<type 'bool'>
>>> type (False)
<type 'bool'>

The == operator is one of the comparison operators; the others are:

x =y # x is not equal to y

X >y # x is greater than y

x <y # x is less than y

X >=y # x is greater than or equal to y
X <=y # x is less than or equal to y

Although these operations are probably familiar to you, the Python symbols are different from the
mathematical symbols. A common error is to use a single equal sign (=) instead of a double equal
sign (==). Remember that = is an assignment operator and == is a comparison operator. There is no
such thing as =< or =>.

5.3 Logical operators

There are three logical operators: and, or, and not. The semantics (meaning) of these operators
is similar to their meaning in English. For example, x > 0 and x < 10 is true only if x is greater
than O and less than 10.

n%2 == 0 or n%3 == 0 is true if either of the conditions is true, that is, if the number is divisible
by 2 or 3.

Finally, the not operator negates a boolean expression, so not (x > y) is true if x > vy is false,
that is, if x is less than or equal to y.

Strictly speaking, the operands of the logical operators should be boolean expressions, but Python is
not very strict. Any nonzero number is interpreted as “true.”

>>> 17 and True
True

This flexibility can be useful, but there are some subtleties to it that might be confusing. You might
want to avoid it (unless you know what you are doing).

5.4 Conditional execution

In order to write useful programs, we almost always need the ability to check conditions and change
the behavior of the program accordingly. Conditional statements give us this ability. The simplest
form is the if statement:

if x > 0:
print 'x is positive'

The boolean expression after the if statement is called the condition. If it is true, then the indented
statement gets executed. If not, nothing happens.

5.5. Alternative execution 41

if statements have the same structure as function definitions: a header followed by an indented
block. Statements like this are called compound statements.

There is no limit on the number of statements that can appear in the body, but there has to be at least
one. Occasionally, it is useful to have a body with no statements (usually as a place keeper for code
you haven’t written yet). In that case, you can use the pass statement, which does nothing.

if x < 0:
pass # need to handle negative values!

5.5 Alternative execution

A second form of the if statement is alternative execution, in which there are two possibilities and
the condition determines which one gets executed. The syntax looks like this:

if x%2 ==

print 'x is even'
else:

print 'x is odd'

If the remainder when x is divided by 2 is 0, then we know that x is even, and the program displays
a message to that effect. If the condition is false, the second set of statements is executed. Since the
condition must be true or false, exactly one of the alternatives will be executed. The alternatives are
called branches, because they are branches in the flow of execution.

5.6 Chained conditionals

Sometimes there are more than two possibilities and we need more than two branches. One way to
express a computation like that is a chained conditional:

if x < y:

print 'x is less than y'
elif x > y:

print 'x is greater than y'
else:

print 'x and y are equal'

elif is an abbreviation of “else if.” Again, exactly one branch will be executed. There is no limit on
the number of elif statements. If there is an else clause, it has to be at the end, but there doesn’t
have to be one.

if choice ==
draw_a ()

elif choice == 'b':
draw_b ()

elif choice == 'c':
draw_c ()

a

Each condition is checked in order. If the first is false, the next is checked, and so on. If one of them
is true, the corresponding branch executes, and the statement ends. Even if more than one condition
is true, only the first true branch executes.

42 Chapter 5. Conditionals and recursion

5.7 Nested conditionals

One conditional can also be nested within another. We could have written the trichotomy example
like this:

if x == y:
print 'x and y are equal'
else:
if x < y:
print 'x is less than y'
else:

print 'x is greater than y'

The outer conditional contains two branches. The first branch contains a simple statement. The sec-
ond branch contains another if statement, which has two branches of its own. Those two branches
are both simple statements, although they could have been conditional statements as well.

Although the indentation of the statements makes the structure apparent, nested conditionals be-
come difficult to read very quickly. In general, it is a good idea to avoid them when you can.

Logical operators often provide a way to simplify nested conditional statements. For example, we
can rewrite the following code using a single conditional:

if 0 < x:
if x < 10:
print 'x is a positive single-digit number.'

The print statement is executed only if we make it past both conditionals, so we can get the same
effect with the and operator:

if 0 < x and x < 10:

print 'x is a positive single-digit number.'

5.8 Recursion

It is legal for one function to call another; it is also legal for a function to call itself. It may not be
obvious why that is a good thing, but it turns out to be one of the most magical things a program can
do. For example, look at the following function:

def countdown (n):
if n <= 0:
print 'Blastoff!'
else:
print n
countdown (n-1)

If n is 0 or negative, it outputs the word, “Blastoff!” Otherwise, it outputs n and then calls a function
named countdown—itself—passing n-1 as an argument.

What happens if we call this function like this?

>>> countdown (3)

5.9. Stack diagrams for recursive functions 43

The execution of countdown begins with n=3, and since n is greater than 0, it outputs the value 3,
and then calls itself...

The execution of countdown begins with n=2, and since n is greater than 0, it outputs
the value 2, and then calls itself...

The execution of countdown begins with n=1, and since n is greater than 0,
it outputs the value 1, and then calls itself...

The execution of countdown begins with n=0, and since n is not
greater than 0, it outputs the word, “Blastoff!” and then returns.

The countdown that got n=1 returns.

The countdown that got n=2 returns.

The countdown that got n=3 returns.
And then you’re back in __main__. So, the total output looks like this:

3
2
1
Blastoff!

A function that calls itself is recursive; the process is called recursion.
As another example, we can write a function that prints a string n times.

def print_n(s, n):
if n <= 0:
return
print s
print_n(s, n-1)

Ifn <= 0the return statement exits the function. The flow of execution immediately returns to the
caller, and the remaining lines of the function are not executed.

The rest of the function is similar to countdown: if n is greater than 0, it displays s and then calls
itself to display s n — 1 additional times. So the number of lines of outputis 1 + (n - 1), which
adds up to n.

For simple examples like this, it is probably easier to use a for loop. But we will see examples later
that are hard to write with a for loop and easy to write with recursion, so it is good to start early.

5.9 Stack diagrams for recursive functions

In Section 3.10, we used a stack diagram to represent the state of a program during a function call.
The same kind of diagram can help interpret a recursive function.

Every time a function gets called, Python creates a new function frame, which contains the function’s
local variables and parameters. For a recursive function, there might be more than one frame on the
stack at the same time.

This figure shows a stack diagram for countdown called withn = 3:

44 Chapter 5. Conditionals and recursion

__main__

countdown n— 3

countdown n— 2
countdown n— 1
countdown n— 0

As usual, the top of the stack is the frame for __main__. It is empty because we did not create any
variables in __main__ or pass any arguments to it.

The four countdown frames have different values for the parameter n. The bottom of the stack,
where n=0, is called the base case. It does not make a recursive call, so there are no more frames.

Draw a stack diagram for print_n called with s = '"Hello' and n=2.

Write a function called do_n that takes a function object and a number, n, as arguments,
and that calls the given function n times.

5.10 Infinite recursion

If a recursion never reaches a base case, it goes on making recursive calls forever, and the program
never terminates. This is known as infinite recursion, and it is generally not a good idea. Here is a
minimal program with an infinite recursion:

def recurse():
recurse ()

In most programming environments, a program with infinite recursion does not really run forever.
Python reports an error message when the maximum recursion depth is reached:

File "<stdin>", line 2, in recurse
File "<stdin>", line 2, in recurse
File "<stdin>", line 2, in recurse

File "<stdin>", line 2, in recurse
RuntimeError: Maximum recursion depth exceeded

This traceback is a little bigger than the one we saw in the previous chapter. When the error occurs,
there are 1000 recurse frames on the stack!

5.11. Keyboard input 45

5.11 Keyboard input

The programs we have written so far are a bit rude in the sense that they accept no input from the
user. They just do the same thing every time.

Python provides a built-in function called raw_input that gets input from the keyboard'. When this
function is called, the program stops and waits for the user to type something. When the user presses
Return or Enter, the program resumes and raw_input returns what the user typed as a string.

>>> input = raw_input ()
What are you waiting for?
>>> print input

What are you waiting for?

Before getting input from the user, it is a good idea to print a prompt telling the user what to input.
raw_input can take a prompt as an argument:

>>> name = raw_input ('What...is your name?\n'")
What...is your name?

Arthur, King of the Britons!

>>> print name

Arthur, King of the Britons!

The sequence \n at the end of the prompt represents a newline, which is a special character that
causes a line break. That’s why the user’s input appears below the prompt.

If you expect the user to type an integer, you can try to convert the return value to int:

>>> prompt = 'What...is the airspeed velocity of an unladen swallow?\n'
>>> speed = raw_input (prompt)

What...is the airspeed velocity of an unladen swallow?

17

>>> int (speed)

17

But if the user types something other than a string of digits, you get an error:

>>> speed = raw_input (prompt)

What...is the airspeed velocity of an unladen swallow?
What do you mean, an African or a European swallow?
>>> int (speed)

ValueError: invalid literal for int()

‘We will see how to handle this kind of error later.

5.12 Debugging

The traceback Python displays when an error occurs contains a lot of information, but it can be
overwhelming, especially when there are many frames on the stack. The most useful parts are
usually:

In Python 3.0, this function is named input.

46 Chapter 5. Conditionals and recursion

¢ What kind of error it was, and

¢ Where it occurred.

Syntax errors are usually easy to find, but there are a few gotchas. Whitespace errors can be tricky
because spaces and tabs are invisible and we are used to ignoring them.

>>> x = 5

>>> y =6

File "<stdin>", line 1
y = 6

SyntaxError: invalid syntax

In this example, the problem is that the second line is indented by one space. But the error mes-
sage points to y, which is misleading. In general, error messages indicate where the problem was
discovered, but the actual error might be earlier in the code, sometimes on a previous line.

The same is true of runtime errors. Suppose you are trying to compute a signal-to-noise ratio in
decibels. The formula is SNRy, = 1010g,4(Psignat / Paoise). In Python, you might write something
like this:

import math

signal_power = 9

noise_power = 10

ratio = signal_power / noise_power
decibels = 10 * math.loglO(ratio)
print decibels

But when you run it, you get an error message’:

Traceback (most recent call last):
File "snr.py", line 5, in ?
decibels = 10 * math.logl0O(ratio)
OverflowError: math range error

The error message indicates line 5, but there is nothing wrong with that line. To find the real error,
it might be useful to print the value of ratio, which turns out to be 0. The problem is in line 4,
because dividing two integers does floor division. The solution is to represent signal power and
noise power with floating-point values.

In general, error messages tell you where the problem was discovered, but that is often not where it
was caused.

5.13 Glossary

modulus operator: An operator, denoted with a percent sign (%), that works on integers and yields
the remainder when one number is divided by another.

boolean expression: An expression whose value is either True or False.

2In Python 3.0, you no longer get an error message; the division operator performs floating-point division even with
integer operands.

5.14. Exercises 47

comparison operator: One of the operators that compares its operands: ==, !=, >, <, >=, and <=.
logical operator: One of the operators that combines boolean expressions: and, or, and not.

conditional statement: A statement that controls the flow of execution depending on some condi-
tion.

condition: The boolean expression in a conditional statement that determines which branch is exe-
cuted.

compound statement: A statement that consists of a header and a body. The header ends with a
colon (:). The body is indented relative to the header.

body: The sequence of statements within a compound statement.
branch: One of the alternative sequences of statements in a conditional statement.
chained conditional: A conditional statement with a series of alternative branches.

nested conditional: A conditional statement that appears in one of the branches of another condi-
tional statement.

recursion: The process of calling the function that is currently executing.
base case: A conditional branch in a recursive function that does not make a recursive call.

infinite recursion: A function that calls itself recursively without ever reaching the base case.
Eventually, an infinite recursion causes a runtime error.

5.14 Exercises

Exercise 5.1 Fermat’s Last Theorem says that there are no integers a, b, and ¢ such that

a'+b" ="
for any values of n greater than 2.

1. Write a function named check_fermat that takes four parameters—a, b, ¢ and n—and that
checks to see if Fermat’s theorem holds. If n is greater than 2 and it turns out to be true that

a'+bvt ="

the program should print, “Holy smokes, Fermat was wrong!” Otherwise the program should
print, “No, that doesn’t work.”

2. Write a function that prompts the user to input values for a, b, ¢ and n, converts them to
integers, and uses check_fermat to check whether they violate Fermat’s theorem.

Exercise 5.2 If you are given three sticks, you may or may not be able to arrange them in a triangle.
For example, if one of the sticks is 12 inches long and the other two are one inch long, it is clear
that you will not be able to get the short sticks to meet in the middle. For any three lengths, there is
a simple test to see if it is possible to form a triangle:

48

Chapter 5. Conditionals and recursion

1.

2.

“If any of the three lengths is greater than the sum of the other two, then you cannot
form a triangle. Otherwise, you can”.”

Write a function named is_triangle that takes three integers as arguments, and that prints
either “Yes” or “No,” depending on whether you can or cannot form a triangle from sticks
with the given lengths.

Write a function that prompts the user to input three stick lengths, converts them to integers,
and uses is_triangle to check whether sticks with the given lengths can form a triangle.

The following exercises use TurtleWorld from Chapter 4:

Exercise 5.3 Read the following function and see if you can figure out what it does. Then run it
(see the examples in Chapter 4).

def

draw (t, length, n):
if n ==

return
angle = 50
fd(t, length*n)
1t (t, angle)
draw(t, length, n-1)
rt (t, 2*angle)
draw(t, length, n-1)
1t (t, angle)
bk (t, length*n)

Exercise 5.4 The Koch curve is a fractal that looks something like this:

To draw a Koch curve with length x, all you have to do is

et

4
5.
6
7

. Draw a Koch curve with length x/3.

Turn left 60 degrees.

Draw a Koch curve with length x/3.

. Turn right 120 degrees.

Draw a Koch curve with length x/3.

. Turn left 60 degrees.

. Draw a Koch curve with length x/3.

The only exception is if x is less than 3. In that case, you can just draw a straight line with length x.

31f the sum of two lengths equals the third, they form what is called a “degenerate” triangle.

5.14.

Exercises 49

. Write a function called koch that takes a turtle and a length as parameters, and that uses the

turtle to draw a Koch curve with the given length.

Write a function called snowflake that draws three Koch curves to make the outline of a
snowflake.
You can see my solution at thinkpython.com/code/koch.py.

The Koch curve can be generalized in several ways. See wikipedia.org/wiki/Koch_
snowflake for examples and implement your favorite.

50

Chapter 5. Conditionals and recursion

Chapter 6

Fruitful functions

6.1 Return values

Some of the built-in functions we have used, such as the math functions, produce results. Calling
the function generates a value, which we usually assign to a variable or use as part of an expression.

e = math.exp(1.0)
height = radius * math.sin(radians)

All of the functions we have written so far are void; they print something or move turtles around,
but their return value is None.

In this chapter, we are (finally) going to write fruitful functions. The first example is area, which
returns the area of a circle with the given radius:

def area(radius):
temp = math.pi * radius**2
return temp

We have seen the return statement before, but in a fruitful function the return statement includes
an expression. This statement means: “Return immediately from this function and use the following
expression as a return value.” The expression can be arbitrarily complicated, so we could have
written this function more concisely:

def area(radius):
return math.pi * radius**2

On the other hand, temporary variables like temp often make debugging easier.
Sometimes it is useful to have multiple return statements, one in each branch of a conditional:

def absolute_value(x):
if x < 0:
return -x
else:
return x

52 Chapter 6. Fruitful functions

Since these return statements are in an alternative conditional, only one will be executed.

As soon as a return statement executes, the function terminates without executing any subsequent
statements. Code that appears after a return statement, or any other place the flow of execution can
never reach, is called dead code.

In a fruitful function, it is a good idea to ensure that every possible path through the program hits a
return statement. For example:

def absolute_value (x):
if x < 0:
return -x
if x > 0:
return x

This function is incorrect because if x happens to be 0, neither condition is true, and the function
ends without hitting a return statement. If the flow of execution gets to the end of a function, the
return value is None, which is not the absolute value of 0.

>>> print absolute_value (0)
None

By the way, Python provides a built-in function called abs that computes absolute values.

Exercise 6.1 Write a compare function that returns 1 if x > y, 0ifx == y,and -1ifx < y.

6.2 Incremental development

As you write larger functions, you might find yourself spending more time debugging.

To deal with increasingly complex programs, you might want to try a process called incremental
development. The goal of incremental development is to avoid long debugging sessions by adding
and testing only a small amount of code at a time.

As an example, suppose you want to find the distance between two points, given by the coordinates
(x1,y1) and (x2,y2). By the Pythagorean theorem, the distance is:

distance = \/(xg —x1)?>+ (2 —y)?

The first step is to consider what a distance function should look like in Python. In other words,
what are the inputs (parameters) and what is the output (return value)?

In this case, the inputs are two points, which you can represent using four numbers. The return value
is the distance, which is a floating-point value.

Already you can write an outline of the function:

def distance(x1, yl, x2, y2):
return 0.0

Obviously, this version doesn’t compute distances; it always returns zero. But it is syntactically
correct, and it runs, which means that you can test it before you make it more complicated.

To test the new function, call it with sample arguments:

6.2. Incremental development 53

>>> distance(1l, 2, 4, 6)
0.0

I chose these values so that the horizontal distance is 3 and the vertical distance is 4; that way, the
result is 5 (the hypotenuse of a 3-4-5 triangle). When testing a function, it is useful to know the right
answer.

At this point we have confirmed that the function is syntactically correct, and we can start adding
code to the body. A reasonable next step is to find the differences x, —x; and y, —y;. The next
version stores those values in temporary variables and prints them.

def distance(x1, yl, x2, y2):
dx = x2 - x1
dy = y2 -yl
print 'dx is', dx
print 'dy is', dy
return 0.0

If the function is working, it should display 'dx is 3' and 'dy is 4'. If so, we know that the
function is getting the right arguments and performing the first computation correctly. If not, there
are only a few lines to check.

Next we compute the sum of squares of dx and dy:

def distance(x1, yl, x2, y2):
dx = x2 - x1
dy = y2 -yl
dsquared = dx**2 + dy**2
print 'dsquared is: ', dsquared
return 0.0

Again, you would run the program at this stage and check the output (which should be 25). Finally,
you can use math.sqgrt to compute and return the result:

def distance(x1, yl, x2, y2):
dx = x2 - x1
dy = y2 -yl
dsquared = dx**2 + dy**2
result = math.sqrt (dsquared)
return result

If that works correctly, you are done. Otherwise, you might want to print the value of result before
the return statement.

The final version of the function doesn’t display anything when it runs; it only returns a value.
The print statements we wrote are useful for debugging, but once you get the function working,
you should remove them. Code like that is called scaffolding because it is helpful for building the
program but is not part of the final product.

When you start out, you should add only a line or two of code at a time. As you gain more ex-
perience, you might find yourself writing and debugging bigger chunks. Either way, incremental
development can save you a lot of debugging time.

The key aspects of the process are:

54 Chapter 6. Fruitful functions

1. Start with a working program and make small incremental changes. At any point, if there is
an error, you should have a good idea where it is.

2. Use temporary variables to hold intermediate values so you can display and check them.

3. Once the program is working, you might want to remove some of the scaffolding or consoli-
date multiple statements into compound expressions, but only if it does not make the program
difficult to read.

Exercise 6.2 Use incremental development to write a function called hypotenuse that returns the
length of the hypotenuse of a right triangle given the lengths of the two legs as arguments. Record
each stage of the development process as you go.

6.3 Composition

As you should expect by now, you can call one function from within another. This ability is called
composition.

As an example, we’ll write a function that takes two points, the center of the circle and a point on
the perimeter, and computes the area of the circle.

Assume that the center point is stored in the variables xc and yc, and the perimeter point is in xp
and yp. The first step is to find the radius of the circle, which is the distance between the two points.
We just wrote a function, distance, that does that:

radius = distance(xc, yc, xp, yp)

The next step is to find the area of a circle with that radius; we just wrote that, too:
result = area(radius)

Encapsulating these steps in a function, we get:

def circle_area(xc, yc, xp, yp):
radius = distance(xc, yc, xp, yp)
result = area(radius)
return result

The temporary variables radius and result are useful for development and debugging, but once
the program is working, we can make it more concise by composing the function calls:

def circle_area(xc, yc, xp, yp):
return area(distance(xc, yc, xp, Vyp))

6.4 Boolean functions

Functions can return booleans, which is often convenient for hiding complicated tests inside func-
tions. For example:

def is_divisible(x, vy):
if x 5y ==
return True
else:

return False

6.5. More recursion 55

It is common to give boolean functions names that sound like yes/no questions; is_divisible
returns either True or False to indicate whether x is divisible by y.

Here is an example:

>>> is_divisible (6, 4)
False
>>> is_divisible (6, 3)
True

The result of the == operator is a boolean, so we can write the function more concisely by returning
it directly:

def is_divisible(x, vy):

Q

return x 3 y ==
Boolean functions are often used in conditional statements:

if is_divisible(x, y):
print 'x is divisible by y'

It might be tempting to write something like:

if is_divisible(x, y) == True:
print 'x is divisible by y'

But the extra comparison is unnecessary.

Exercise 6.3 Write a function is_between(x, y, z) that returns True if x <y < z or False
otherwise.

6.5 More recursion

We have only covered a small subset of Python, but you might be interested to know that this
subset is a complete programming language, which means that anything that can be computed can
be expressed in this language. Any program ever written could be rewritten using only the language
features you have learned so far (actually, you would need a few commands to control devices like
the keyboard, mouse, disks, etc., but that’s all).

Proving that claim is a nontrivial exercise first accomplished by Alan Turing, one of the first com-
puter scientists (some would argue that he was a mathematician, but a lot of early computer scientists
started as mathematicians). Accordingly, it is known as the Turing Thesis. For a more complete (and
accurate) discussion of the Turing Thesis, I recommend Michael Sipser’s book Introduction to the
Theory of Computation.

To give you an idea of what you can do with the tools you have learned so far, we’ll evaluate a few
recursively defined mathematical functions. A recursive definition is similar to a circular definition,
in the sense that the definition contains a reference to the thing being defined. A truly circular
definition is not very useful:

frabjous: An adjective used to describe something that is frabjous.

56 Chapter 6. Fruitful functions

If you saw that definition in the dictionary, you might be annoyed. On the other hand, if you looked
up the definition of the factorial function, denoted with the symbol !, you might get something like
this:

0l=1

nl=n(n—1)!

This definition says that the factorial of O is 1, and the factorial of any other value, 7, is n multiplied
by the factorial of n — 1.

So 3!is 3 times 2!, which is 2 times 1!, which is 1 times 0!. Putting it all together, 3! equals 3 times
2 times 1 times 1, which is 6.

If you can write a recursive definition of something, you can usually write a Python program to
evaluate it. The first step is to decide what the parameters should be. In this case it should be clear
that factorial takes an integer:

def factorial(n):
If the argument happens to be 0, all we have to do is return 1:

def factorial(n):
if n ==
return 1

Otherwise, and this is the interesting part, we have to make a recursive call to find the factorial of
n— 1 and then multiply it by n:

def factorial(n):
if n ==
return 1
else:
recurse = factorial (n-1)
result = n * recurse
return result

The flow of execution for this program is similar to the flow of countdown in Section 5.8. If we call
factorial with the value 3:

Since 3 is not 0, we take the second branch and calculate the factorial of n-1...

Since 2 is not 0, we take the second branch and calculate the factorial of n-1...

Since 1 is not 0, we take the second branch and calculate the factorial of
n-1...

Since 0 is 0, we take the first branch and return 1 without making
any more recursive calls.

The return value (1) is multiplied by #, which is 1, and the result is returned.

The return value (1) is multiplied by n, which is 2, and the result is returned.

The return value (2) is multiplied by n, which is 3, and the result, 6, becomes the return value of the
function call that started the whole process.

Here is what the stack diagram looks like for this sequence of function calls:

6.6. Leap of faith 57

__main__

»

factorial n— 3 recurse — 2 result— 6

factorial n— 2 recurse — 1 result — 2

—

factorial n— 1 recurse — 1 result —= 1

AN AN AN,

factorial n—20

The return values are shown being passed back up the stack. In each frame, the return value is the
value of result, which is the product of n and recurse.

In the last frame, the local variables recurse and result do not exist, because the branch that
creates them does not execute.

6.6 Leap of faith

Following the flow of execution is one way to read programs, but it can quickly become labyrinthine.
An alternative is what I call the “leap of faith.” When you come to a function call, instead of
following the flow of execution, you assume that the function works correctly and returns the right
result.

In fact, you are already practicing this leap of faith when you use built-in functions. When you call
math.cos ormath.exp, you don’t examine the bodies of those functions. You just assume that they
work because the people who wrote the built-in functions were good programmers.

The same is true when you call one of your own functions. For example, in Section 6.4, we wrote
a function called is_divisible that determines whether one number is divisible by another. Once
we have convinced ourselves that this function is correct—by examining the code and testing—we
can use the function without looking at the body again.

The same is true of recursive programs. When you get to the recursive call, instead of following
the flow of execution, you should assume that the recursive call works (yields the correct result) and
then ask yourself, “Assuming that I can find the factorial of n — 1, can I compute the factorial of n?”
In this case, it is clear that you can, by multiplying by n.

Of course, it’s a bit strange to assume that the function works correctly when you haven’t finished
writing it, but that’s why it’s called a leap of faith!

6.7 One more example

After factorial, the most common example of a recursively defined mathematical function is
fibonacci, which has the following definition':

ISee wikipedia.org/wiki/Fibonacci_number.

58 Chapter 6. Fruitful functions

fibonacci(0) =0
fibonacci(l) =1
fibonacci(n) = fibonacci(n — 1) + fibonacci(n — 2);

Translated into Python, it looks like this:

def fibonacci (n):
if n ==
return 0
elif n == 1:
return 1
else:
return fibonacci (n-1) + fibonacci (n-2)

If you try to follow the flow of execution here, even for fairly small values of n, your head explodes.
But according to the leap of faith, if you assume that the two recursive calls work correctly, then it
is clear that you get the right result by adding them together.

6.8 Checking types

What happens if we call factorial and give it 1.5 as an argument?

>>> factorial(l.5)
RuntimeError: Maximum recursion depth exceeded

It looks like an infinite recursion. But how can that be? There is a base case—when n == 0. But if
n is not an integer, we can miss the base case and recurse forever.

In the first recursive call, the value of n is 0.5. In the next, it is -0.5. From there, it gets smaller
(more negative), but it will never be 0.

We have two choices. We can try to generalize the factorial function to work with floating-point
numbers, or we can make factorial check the type of its argument. The first option is called the
gamma function” and it’s a little beyond the scope of this book. So we’ll go for the second.

We can use the built-in function isinstance to verify the type of the argument. While we’re at it,
we can also make sure the argument is positive:

def factorial (n):

if not isinstance(n, int):
print 'Factorial is only defined for integers.'
return None

elif n < 0:
print 'Factorial is only defined for positive integers.'
return None

elif n ==
return 1

else:
return n * factorial (n-1)

2See wikipedia.org/wiki/Gamma_function.

6.9. Debugging 59

The first base case handles nonintegers; the second catches negative integers. In both cases, the
program prints an error message and returns None to indicate that something went wrong:

>>> factorial('fred')

Factorial is only defined for integers.

None

>>> factorial (-2)

Factorial is only defined for positive integers.
None

If we get past both checks, then we know that n is a positive integer, and we can prove that the
recursion terminates.

This program demonstrates a pattern sometimes called a guardian. The first two conditionals act
as guardians, protecting the code that follows from values that might cause an error. The guardians
make it possible to prove the correctness of the code.

6.9 Debugging

Breaking a large program into smaller functions creates natural checkpoints for debugging. If a
function is not working, there are three possibilities to consider:

* There is something wrong with the arguments the function is getting; a precondition is vio-
lated.

* There is something wrong with the function; a postcondition is violated.

* There is something wrong with the return value or the way it is being used.

To rule out the first possibility, you can add a print statement at the beginning of the function and
display the values of the parameters (and maybe their types). Or you can write code that checks the
preconditions explicitly.

If the parameters look good, add a print statement before each return statement that displays the
return value. If possible, check the result by hand. Consider calling the function with values that
make it easy to check the result (as in Section 6.2).

If the function seems to be working, look at the function call to make sure the return value is being
used correctly (or used at all!).

Adding print statements at the beginning and end of a function can help make the flow of execution
more visible. For example, here is a version of factorial with print statements:

def factorial(n):

space = ' ' * (4 * n)

print space, 'factorial', n

if n ==
print space, 'returning 1'
return 1

else:
recurse = factorial (n-1)
result = n * recurse
print space, 'returning', result
return result

60 Chapter 6. Fruitful functions

space is a string of space characters that controls the indentation of the output. Here is the result of
factorial(5) :

factorial 5
factorial 4
factorial 3
factorial 2
factorial 1
factorial 0
returning 1
returning 1
returning 2
returning 6
returning 24
returning 120

If you are confused about the flow of execution, this kind of output can be helpful. It takes some
time to develop effective scaffolding, but a little bit of scaffolding can save a lot of debugging.

6.10 Glossary

temporary variable: A variable used to store an intermediate value in a complex calculation.

dead code: Part of a program that can never be executed, often because it appears after a return
statement.

None: A special value returned by functions that have no return statement or a return statement
without an argument.

incremental development: A program development plan intended to avoid debugging by adding
and testing only a small amount of code at a time.

scaffolding: Code that is used during program development but is not part of the final version.

guardian: A programming pattern that uses a conditional statement to check for and handle cir-
cumstances that might cause an error.

6.11 Exercises

Exercise 6.4 Draw a stack diagram for the following program. What does the program print?

def b(z):
prod = a(z, z)
print z, prod
return prod

def a(x, y):
Xx=x+1

return x * vy

def c(x, y, z):

6.11. Exercises 61

sum = x +y + z
pow = b (sum) **2
return pow

x =1
y=x+1
print c(x, y+3, x+ty)

Exercise 6.5 The Ackermann function, A(m,n), is defined?:

n+1 ifm=0
A(m,n) = ¢ A(m—1,1) ifm>0andn=0 (6.1)
Am—1,A(myn—1)) ifm>0andn>0.

Write a function named ack that evaluates Ackerman’s function. Use your function to evaluate
ack (3, 4), which should be 125. What happens for larger values of m and n?

Exercise 6.6 A palindrome is a word that is spelled the same backward and forward, like “noon”
and “redivider”. Recursively, a word is a palindrome if the first and last letters are the same and the
middle is a palindrome.

The following are functions that take a string argument and return the first, last, and middle letters:

def first (word):
return word[0]

def last (word):
return word[-1]

def middle (word) :
return word[l:-1]

We’ll see how they work in Chapter 8.

1. Type these functions into a file named palindrome.py and test them out. What happens if
you call middle with a string with two letters? One letter? What about the empty string,
which is written ' ' and contains no letters?

2. Write a function called is_palindrome that takes a string argument and returns True if it is
a palindrome and False otherwise. Remember that you can use the built-in function len to
check the length of a string.

Exercise 6.7 A number, a, is a power of b if it is divisible by b and a/b is a power of b. Write a
function called is_power that takes parameters a and b and returns True if a is a power of b.

Exercise 6.8 The greatest common divisor (GCD) of @ and b is the largest number that divides both
of them with no remainder?.

3See wikipedia.org/wiki/Ackermann_function
“This exercise is based on an example from Abelson and Sussman’s Structure and Interpretation of Computer Programs.

62 Chapter 6. Fruitful functions

One way to find the GCD of two numbers is Euclid’s algorithm, which is based on the observation
that if r is the remainder when a is divided by b, then gcd(a,b) = gecd(b,r). As a base case, we can
consider ged(a,0) = a.

Write a function called gcd that takes parameters a and b and returns their greatest common divisor.
If you need help, see wikipedia.org/wiki/Euclidean_algorithm.

Chapter 7

Iteration

7.1 Multiple assignment

As you may have discovered, it is legal to make more than one assignment to the same variable. A
new assignment makes an existing variable refer to a new value (and stop referring to the old value).

bruce = 5
print bruce,
bruce = 7

print bruce

The output of this program is 5 7, because the first time bruce is printed, its value is 5, and the
second time, its value is 7. The comma at the end of the first print statement suppresses the
newline, which is why both outputs appear on the same line.

Here is what multiple assignment looks like in a state diagram:

bruce
\7

With multiple assignment it is especially important to distinguish between an assignment operation
and a statement of equality. Because Python uses the equal sign (=) for assignment, it is tempting to
interpret a statement like a = b as a statement of equality. It is not!

First, equality is a symmetric relation and assignment is not. For example, in mathematics, if a =7
then 7 = a. But in Python, the statement a = 7 islegal and 7 = ais not.

Furthermore, in mathematics, a statement of equality is either true or false, for all time. If a = b
now, then a will always equal b. In Python, an assignment statement can make two variables equal,
but they don’t have to stay that way:

a=>5
b=a # a and b are now equal
a =3 # a and b are no longer equal

64 Chapter 7. Iteration

The third line changes the value of a but does not change the value of b, so they are no longer equal.

Although multiple assignment is frequently helpful, you should use it with caution. If the values of
variables change frequently, it can make the code difficult to read and debug.

7.2 Updating variables

One of the most common forms of multiple assignment is an update, where the new value of the
variable depends on the old.

x = x+1
This means “get the current value of x, add one, and then update x with the new value.”

If you try to update a variable that doesn’t exist, you get an error, because Python evaluates the right
side before it assigns a value to x:

>>> x = x+1
NameError: name 'x' is not defined

Before you can update a variable, you have to initialize it, usually with a simple assignment:

>>> x = 0
>>> x = x+1

Updating a variable by adding 1 is called an increment; subtracting 1 is called a decrement.

7.3 The while statement

Computers are often used to automate repetitive tasks. Repeating identical or similar tasks without
making errors is something that computers do well and people do poorly.

We have seen two programs, countdown and print_n, that use recursion to perform repetition,
which is also called iteration. Because iteration is so common, Python provides several language
features to make it easier. One is the for statement we saw in Section 4.2. We’ll get back to that
later.

Another is the while statement. Here is a version of countdown that uses a while statement:

def countdown (n):
while n > 0:
print n
n =n-1
print 'Blastoff!’

You can almost read the while statement as if it were English. It means, “While n is greater than
0, display the value of n and then reduce the value of n by 1. When you get to 0, display the word
Blastoff!”

More formally, here is the flow of execution for a while statement:

1. Evaluate the condition, yielding True or False.

7.4. break 65

2. If the condition is false, exit the while statement and continue execution at the next statement.

3. If the condition is true, execute the body and then go back to step 1.

This type of flow is called a loop because the third step loops back around to the top.

The body of the loop should change the value of one or more variables so that eventually the condi-
tion becomes false and the loop terminates. Otherwise the loop will repeat forever, which is called
an infinite loop. An endless source of amusement for computer scientists is the observation that the
directions on shampoo, “Lather, rinse, repeat,” are an infinite loop.

In the case of countdown, we can prove that the loop terminates because we know that the value of
n is finite, and we can see that the value of n gets smaller each time through the loop, so eventually
we have to get to 0. In other cases, it is not so easy to tell:

def sequence(n):
| =

while n 1:
print n,
if n%2 == 0: # n is even
n=n/2
else: # n is odd
n = n*3+1
The condition for this loop is n != 1, so the loop will continue until n is 1, which makes the

condition false.

Each time through the loop, the program outputs the value of n and then checks whether it is even or
odd. If it is even, n is divided by 2. If it is odd, the value of n is replaced with n*3+1. For example,
if the argument passed to sequence is 3, the resulting sequence is 3, 10, 5, 16, 8, 4, 2, 1.

Since n sometimes increases and sometimes decreases, there is no obvious proof that n will ever
reach 1, or that the program terminates. For some particular values of n, we can prove termination.
For example, if the starting value is a power of two, then the value of n will be even each time
through the loop until it reaches 1. The previous example ends with such a sequence, starting with
16.

The hard question is whether we can prove that this program terminates for all positive values of n.
So far!, no one has been able to prove it or disprove it!

Exercise 7.1 Rewrite the function print_n from Section 5.8 using iteration instead of recursion.

7.4 break

Sometimes you don’t know it’s time to end a loop until you get half way through the body. In that
case you can use the break statement to jump out of the loop.

For example, suppose you want to take input from the user until they type done. You could write:

while True:
line = raw_input('> ")
if line == 'done':

See wikipedia.org/wiki/Collatz_conjecture.

66 Chapter 7. Iteration

break
print line

print 'Done!'
The loop condition is True, which is always true, so the loop runs until it hits the break statement.

Each time through, it prompts the user with an angle bracket. If the user types done, the break
statement exits the loop. Otherwise the program echoes whatever the user types and goes back to
the top of the loop. Here’s a sample run:

> not done
not done

> done
Done!

This way of writing while loops is common because you can check the condition anywhere in
the loop (not just at the top) and you can express the stop condition affirmatively (“stop when this
happens”) rather than negatively (“keep going until that happens.”).

7.5 Square roots

Loops are often used in programs that compute numerical results by starting with an approximate
answer and iteratively improving it.

For example, one way of computing square roots is Newton’s method. Suppose that you want to
know the square root of a. If you start with almost any estimate, x, you can compute a better estimate
with the following formula:

_ x+ta/x
=5
For example, if a is 4 and x is 3:
>>> a = 4.0
>>> x = 3.0
>>>y = (x + a/x) / 2

>>> print y
2.16666666667

Which is closer to the correct answer (\/Zl = 2). If we repeat the process with the new estimate, it
gets even closer:

>>> x =y

>>>y = (x + a/x) / 2
>>> print y
2.00641025641

After a few more updates, the estimate is almost exact:

>>> x =y
>>> y (x + a/x) / 2
>>> print y

7.6. Algorithms 67

2.00001024003

>>> x =y

>>>y = (x + a/x) / 2
>>> print y
2.00000000003

In general we don’t know ahead of time how many steps it takes to get to the right answer, but we
know when we get there because the estimate stops changing:

>>> x =y

>>> vy = (x + a/x) / 2
>>> print y

2.0

>>> x =y

>>> y = (x + a/x) / 2
>>> print y

2.0

When y == x, we can stop. Here is a loop that starts with an initial estimate, x, and improves it
until it stops changing:

while True:
print x
y = (x +a/x) / 2
if y == x:
break
X =Yy

For most values of a this works fine, but in general it is dangerous to test f1oat equality. Floating-
point values are only approximately right: most rational numbers, like 1/3, and irrational numbers,
like v/2, can’t be represented exactly with a float.

Rather than checking whether x and y are exactly equal, it is safer to use the built-in function abs to
compute the absolute value, or magnitude, of the difference between them:

if abs(y-x) < epsilon:
break

Where epsilon has a value like 0.0000001 that determines how close is close enough.

Exercise 7.2 Encapsulate this loop in a function called square_root that takes a as a parameter,
chooses a reasonable value of %, and returns an estimate of the square root of a.

7.6 Algorithms

Newton’s method is an example of an algorithm: it is a mechanical process for solving a category
of problems (in this case, computing square roots).

It is not easy to define an algorithm. It might help to start with something that is not an algorithm.
When you learned to multiply single-digit numbers, you probably memorized the multiplication
table. In effect, you memorized 100 specific solutions. That kind of knowledge is not algorithmic.

68 Chapter 7. Iteration

But if you were “lazy,” you probably cheated by learning a few tricks. For example, to find the
product of n and 9, you can write n — 1 as the first digit and 10 — n as the second digit. This trick is
a general solution for multiplying any single-digit number by 9. That’s an algorithm!

Similarly, the techniques you learned for addition with carrying, subtraction with borrowing, and
long division are all algorithms. One of the characteristics of algorithms is that they do not require
any intelligence to carry out. They are mechanical processes in which each step follows from the
last according to a simple set of rules.

In my opinion, it is embarrassing that humans spend so much time in school learning to execute
algorithms that, quite literally, require no intelligence.

On the other hand, the process of designing algorithms is interesting, intellectually challenging, and
a central part of what we call programming.

Some of the things that people do naturally, without difficulty or conscious thought, are the hardest
to express algorithmically. Understanding natural language is a good example. We all do it, but so
far no one has been able to explain how we do it, at least not in the form of an algorithm.

7.7 Debugging

As you start writing bigger programs, you might find yourself spending more time debugging. More
code means more chances to make an error and more place for bugs to hide.

One way to cut your debugging time is “debugging by bisection.” For example, if there are 100 lines
in your program and you check them one at a time, it would take 100 steps.

Instead, try to break the problem in half. Look at the middle of the program, or near it, for an
intermediate value you can check. Add a print statement (or something else that has a verifiable
effect) and run the program.

If the mid-point check is incorrect, the problem must be in the first half of the program. If it is
correct, the problem is in the second half.

Every time you perform a check like this, you halve the number of lines you have to search. After
six steps (which is much less than 100), you would be down to one or two lines of code, at least in
theory.

In practice it is not always clear what the “middle of the program” is and not always possible to
check it. It doesn’t make sense to count lines and find the exact midpoint. Instead, think about
places in the program where there might be errors and places where it is easy to put a check. Then
choose a spot where you think the chances are about the same that the bug is before or after the
check.

7.8 Glossary

multiple assignment: Making more than one assignment to the same variable during the execution
of a program.

update: An assignment where the new value of the variable depends on the old.

initialize: An assignment that gives an initial value to a variable that will be updated.

7.9. Exercises 69

increment: An update that increases the value of a variable (of