
Polyline Distance/length Calculations With... Numpy and Arcpy

This is a simple example of calculating distance/length related values using points that are the ver-
tices of a polyline. The usual methods would include using arcpy methods associated with the point
class and various cursors in the arcpy module.

We will begin by a simple 2D shapefile with 10 points. Import our two main modules and create
an array using the built-in FeatureClassToNumPyArray method. All that is required is a featureclass
in a geodatabase or ashapefile and the fields that you want to import. Details are presented in the help
topics given in the reference section.

I prefer to use my own dtype names when working with arrays, so I just create my own (line 9) and
assign them to the input array (line 11). This is possible since the data types have not changed, just the
names.

Note: i4 is an integer data type and f8 is a double/float... details elsewhere, but that is effectively
what you will use except for text (U5 for unicode string 5 characters wide) and maybe datetime (ad-
dressed much later).

In [1]: import numpy as np
import arcpy

---- load a shapefile into an array and simplify the dtype ----
in_fc = r'C:\Git_Dan\JupyterNoteBooks\Data\Shapefiles\test.shp'

a = arcpy.da.FeatureClassToNumPyArray(in_fc,
["OID@", "SHAPE@X", "SHAPE@Y"])

dt = [('ID', '<i4'), ('X', '<f8'), ('Y', '<f8')]

a.dtype = dt

frmt = """
(1) Structured array, reshaped to facilitate viewing\n{!r:}
"""
print(frmt.format(a.reshape(a.shape[0], -1)))

(1) Structured array, reshaped to facilitate viewing
array([[(0, 7.0, 2.0)],

[(1, 8.0, 1.0)],
[(2, 2.0, 1.0)],
[(3, 4.0, 9.0)],
[(4, 0.0, 7.0)],
[(5, 1.0, 8.0)],
[(6, 5.0, 7.0)],
[(7, 7.0, 4.0)],
[(8, 1.0, 1.0)],
[(9, 2.0, 2.0)]],

dtype=[('ID', '<i4'), ('X', '<f8'), ('Y', '<f8')])

1

At this point, a structured array has been created and ready for use. Calculating distance between
points can be accomplished using a variety of means. They are all valid, but I have my preference since
it scales well to arrays with dimensions greater than 2D. The details of the calculation are not really
pertinent to the discussion.

At this point, we need to pull out the X, Y coordinates to make it easier and faster to complete the
task. Remember, this demonstration is showing all the steps... there are helper functions to do these
repetitive tasks for you...

In [2]: # ---
Create an array to hold the X, Y values and our result, and
fill it appropriately ----
np.zeros(shape=(rows, cols), dtype=datatype)
[:, 0] means every row, the first column [:, 1] is the second column
compute the sequential differences between the points
xy = np.zeros((len(a), 3), dtype='float')

xy[:, 0] = a['X']
xy[:, 1] = a['Y']

diff = xy[1:] - xy[:-1]

dist_sq = np.einsum('ij,ij->i', diff, diff) # magic happens here

e_dist = np.sqrt(dist_sq).squeeze()

h_dist = np.hypot(diff[:, 1], diff[:, 0]) # Pythagoras to the rescue

now fill the xy array's third column with the distances skipping the first
#
xy[1:, 2] = e_dist

print("(2) e_dist = h_dist?... {}\n".format(np.all(e_dist==h_dist)))
print("(3) the X, Y and Distances\n{}".format(xy))

(2) e_dist = h_dist?... True

(3) the X, Y and Distances
[[7. 2. 0.]
[8. 1. 1.41421356]
[2. 1. 6.]
[4. 9. 8.24621125]
[0. 7. 4.47213595]
[1. 8. 1.41421356]
[5. 7. 4.12310563]
[7. 4. 3.60555128]
[1. 1. 6.70820393]
[2. 2. 1.41421356]]

2

The results can be sent out to a featureclass either by appending to an existing one, or creating a
new one. The following shows how to accomplish this. The first step is to create a new dtype and an
output array to fill. The results are created and send to an output featureclass. The previous dtype will
be reused and added to.

In [3]: # ---
prepare a structured array to fill
notice that there is no 'ID' field!!!
fill the array
off to a shapefile or featureclass, uncomment line 14 obviously

dt = [('X', '<f8'), ('Y', '<f8')] + [('Dist', '<f8')]

out = np.zeros((len(xy),), dtype=dt)
names = out.dtype.names
for i in range(xy.shape[1]):

out[names[i]] = xy[:, i]

arcpy.da.NumPyArrayToFeatureClass(out, r'c:\temp\test.shp', ['X', 'Y'])

You may have noticed that no ID field was needed to create the output array since ArcMap or ArcGIS
Pro will create the necessary identification field.

In the above example, the interpoint distances were calculated. It should come as no surprise that
one could calculate:

1. the total length
2. the distance between any two points on the polyline (ie first and last, first and all others, etcetera)
3. a distance matrix of distances of all points to all other points

The options are endless, and only slight modifications to the base code is required.

In [4]: # ---
begin with xy array, form a cloned version with a different shape
this is needed for 'array broadcasting'
subtract the two arrays
return euclidean distance and clean up

a = xy.reshape(xy.shape[0], 1, xy.shape[1])
diff = a - xy
e_matrix = np.einsum('ijk,ijk->ij', diff, diff) # 'Magic'
out = np.sqrt(e_matrix).squeeze()

---- set up some formatting options and print away ---- (homework)

np.set_printoptions(edgeitems=10, linewidth=80, precision=1,
suppress=True, threshold=100)

print("\nDistance matrix between all points...\n{!r:}".format(out))

3

Distance matrix between all points...
array([[0. , 2. , 7.9, 11.2, 9.7, 8.6, 6.8, 4.1, 9.1, 5.2],

[2. , 0. , 7.6, 11.3, 10.5, 9.9, 7.2, 3.8, 8.8, 6.1],
[7.9, 7.6, 0. , 8.5, 6.5, 8.4, 7. , 6.3, 1.2, 4.7],
[11.2, 11.3, 8.5, 0. , 5.9, 7.5, 4.7, 7.5, 8.7, 10.],
[9.7, 10.5, 6.5, 5.9, 0. , 3.4, 5. , 7.7, 6.5, 6.2],
[8.6, 9.9, 8.4, 7.5, 3.4, 0. , 4.9, 7.5, 8.8, 6.1],
[6.8, 7.2, 7. , 4.7, 5. , 4.9, 0. , 3.6, 7.7, 6.4],
[4.1, 3.8, 6.3, 7.5, 7.7, 7.5, 3.6, 0. , 7.4, 5.8],
[9.1, 8.8, 1.2, 8.7, 6.5, 8.8, 7.7, 7.4, 0. , 5.5],
[5.2, 6.1, 4.7, 10. , 6.2, 6.1, 6.4, 5.8, 5.5, 0.]])

References

Point class

http://desktop.arcgis.com/en/arcmap/latest/analyze/arcpy-classes/point.htm

Point Geometry class

http://desktop.arcgis.com/en/arcmap/latest/analyze/arcpy-classes/pointgeometry.htm

FeatureClassToNumPyArray method

http://desktop.arcgis.com/search/?q=featureclasstonumpyarray&collection=help&product=arcgis-desktop&version=10.5&language=en

4

