
"You are not allowed to use
Geoprocessing Results... ":
The Students get smarter

This is part two of a post inspired by the thread in GeoNet entitled I'm a student and I need a
python script that i can use for ArcMap and Modelbuilder was not permitted to generate the
script (https://geonet.esri.com/thread/116880). In my previous blog, You are not allowed to
use Modelbuilder": When Instructors need to get smarter 1, I discussed how to use the
Geoprocessing results window to generate a script stub by using a process that works manually
to generate it. Last time, we were left with this somewhat horrendous, but functional script...
stub_01.py which I won't even attempt to format to make it readable.

'''
stub_01.py
'''
Replace a layer/table view name with a path to a dataset (which can be a layer file) or create the
layer/table view within the script
The following inputs are layers or table views: "AOI_mtm9"
arcpy.MakeFeatureLayer_management(in_features="C:/!test/mapping/shapefiles/AOI_mtm9.shp",out_layer="AOI_out",wh
ere_clause="#",workspace="#",field_info="FID FID VISIBLE NONE;Shape Shape VISIBLE NONE;Id Id VISIBLE NONE")
arcpy.MakeFeatureLayer_management(in_features="C:/!test/mapping/shapefiles/RandomPnts.shp",out_layer="Randout",
where_clause="#",workspace="#",field_info="FID FID VISIBLE NONE;Shape Shape VISIBLE NONE;Id Id VISIBLE NONE;X X
VISIBLE NONE;Y Y VISIBLE NONE")
Replace a layer/table view name with a path to a dataset (which can be a layer file) or create the
layer/table view within the script
The following inputs are layers or table views: "Randout", "AOI_out"
arcpy.SelectLayerByLocation_management(in_layer="Randout",overlap_type="INTERSECT",select_features="AOI_out",se
arch_distance="#",selection_type="NEW_SELECTION")
Replace a layer/table view name with a path to a dataset (which can be a layer file) or create the
layer/table view within the script
The following inputs are layers or table views: "Randout"
arcpy.CopyFeatures_management(in_features="Randout",out_feature_class="C:/!test/mapping/shapefiles/Result.shp",
config_keyword="#",spatial_grid_1="0",spatial_grid_2="0",spatial_grid_3="0")

This stub will now be dissected and used to generate a script for use in a toolbox. The
assumptions...or the new requirements are (clever Instructor)

� Start ArcMap with a new blank project.
� I have switched up the files to use because of former students passing on answers to this

class
� The workflow you develop must add the input data and the results to ArcMap
� You still cannot use Modelbuilder

So the script so far, will do that but it is somewhat ugly and is hardcoded for a particular set of
data. Of course you would provide documentation on how to edit your script so that the user
could perform the workflow with their data, specifying the inputs and outputs.

Mark so far C- ...

 1 Dan Patterson's Blog "You are not allowed to use modelbuilder": When Instructors Need to get smarter

Page 1 of 7

https://geonet.esri.com/thread/116880
https://geonet.esri.com/blogs/dan_patterson/2014/11/13/you-are-not-allowed-to-use-modelbuilder-when-instructors-need-to-get-smarter?sr=inbox&ru=6836

Method 2 Expand the script...and see how far you can get

We will expand upon the workflow used previously. In that example, we used 2 feature layers
to perform a select by location with the results copied to a new shapefile. This workflow will be
taken to the next step.

1 Start with your last project, which you saved to disk, and open the Geoprocessing Results
window.

2 Examine some of the steps used to create the
script stub in more detail. In the previous
session, the input to the Make Feature Layer
tool was a shapefile residing on disk and no
other parameters were specified. 2
Feature layers are useful since they contain a
reference to the data and the symbology that
exists when the feature layer was last used. It
is suggested that you save the feature layer to
the same location with the same filename (.lyr
extension) as the input file.

The syntax shown in the help files is:

MakeFeatureLayer_management (in_features, out_layer,
 {where_clause}, {workspace}, {field_info})

The only two required parameters are the features required to create the layer and the
layer's name itself. The other parameters are optional (enclosed in curly brackets... {
optional }. There is really no point in just replicating the tool exactly since it would be
redundant. The clever student wants to simplify a workflow for the user and generate a tool
that will be useful.

3 Begin modifying the script stub created in the last session and account for the new files to
use. The comments have been temporarily removed and the arcpy module is imported as
one of the first functional lines of the script. If it has been previously loaded, it won't be
loaded again so it will have no detrimental impact on script run-time. To begin, translate this
long-winded sequence...

'''
stub_02a.py
'''
import arcpy
arcpy.MakeFeatureLayer_management(in_features="C:/!test/Script_Demo/Shapefiles/Maija
_Poynts.shp",out_layer="
... cont'd

to something more manageable by separating the required inputs and dumping any optional

 2 Make Feature Layer help

Page 2 of 7

http://resources.arcgis.com/en/help/main/10.2/index.html#/Make_Feature_Layer/00170000006p000000/

inputs that aren't necessary or desired and repeating it twice for each shapefile (stub_2a.py).

'''
stub_02a.py
'''
import arcpy

in_features="C:/!test/Script_Demo/Maija_Poynts.shp"
out_layer="Maija_out"
arcpy.MakeFeatureLayer_management(in_features,out_layer)

in_features="C:/!test/Script_Demo/Polly_Ghon.shp"
out_layer="Poly_out"
arcpy.MakeFeatureLayer_management(in_features,out_layer)
... cont'd

Hopefully, the clever student has been introduced to python objects and has been reading
upon ArcToolbox tools and their parameters and has quickly realized that someone isn't
going to want to perform the analysis on the exact same files you did, nor are they going to
be inclined to edit your script to specify their desired inputs and outputs.

Now it is time to leave the C- group behind by making the script more generic and
documenting it.

4 To make the script really useful, the script and its associated toolbox should allow the user to
select multiple inputs. I also like to run a Python window to perform some of the steps in
interactive mode prior to committing anything to script. Use any Python IDE that you want
except the one in ArcMap since we want to do the testing independently of ArcMap at this
stage.

From your readings, you will notice that many scripts use Python's os and sys modules to
provide access to methods associated with your operating system and other system
parameters. You can explore these by importing the modules and use Python's dir to get a
listing of the options.

In interactive mode in a Python IDE, it may look something like this (greatly simplified):

>>> import arcpy
>>>
>>> import os
>>>
>>> dir(os)
[big snip'chdir', ... 'curdir', ... 'environ', ... 'getcwd', ... 'path', ...
'rename', ...]
>>>
>>> import sys
>>>
>>> dir(sys)
[big snip' ... ,'argv', ... ,'exit', ...]
>>>

At this point the variable names should be changed to reflect what they are. Several useful
Python methods will also be used for handling file paths, names and extensions.

Page 3 of 7

>>> Snip ...
>>> sel_from = "C:/!test/Script_Demo/Maija_Poynts.shp" # the points to select
>>> os.path.split(sel_from) # split the file name from the complete name
('C:/!test/Script_Demo', 'Maija_Poynts.shp')
>>> path, shp_name = os.path.split(sel_from) #returns a tuple, split into...
>>> path # the path of the shapefile
'C:/!test/Script_Demo'
>>> shp_name # the shapefile name
'Maija_Poynts.shp'
>>>

The above code snippet takes an input filename which will be the input to creating a feature
layer and the select by attributes tools. The filename is split into its path and name
components as can be seen from the outputs.

Some of you may have noticed that things to the left of an = sign are variable names and
those to the right are its value. The os module contains a path module which contains a
split function (lost yet ?). Keep these handy little snippets in a document so you can refer
to them in the future when you have long forgotten but have a vague memory of doing
something similar.

The sys module allows you to get script arguments (aka requirements) via the argv function.
The scripts name is sys.argv[0], and the remaining required variables are incremented
accordingly. Exploiting this allows the script to evolve to accept parameters needed for the
script to function and the user to choose. The new script stub, stub_02b.py, incorporates
some of these ideas including the documentation and the new import statements.

'''
stub_02b.py

my_script script name and location
sel_from The layer to select feature from
sel_by The layer used to select the features in sel_from
parameters if run command line... a space delimited set of string values
"C:/!test/Script_Demo/Shapefiles/Maija_Poynts.shp"
"C:/!test/Script_Demo/Shapefiles/Polly_Ghon.shp"
'''
import arcpy
import os
import sys

Get the input parameters
my_script = sys.argv[0]
sel_from = sys.argv[1]
sel_by = sys.argv[2]

Make the feature layers and save to disk
path, shp_name = os.path.split(sel_from) # get the path and name
sel_from_lyr = shp_name.replace(".shp","") # same name, different
extension
out_layer = path + "/" + sel_from_lyr + ".lyr"
out_layer.replace("\\","/") # Ooooo more reading
print "Creating layer : ", sel_from_lyr
arcpy.MakeFeatureLayer_management(sel_from, sel_from_lyr)
arcpy.SaveToLayerFile_management(sel_from_lyr, out_layer,"RELATIVE")
print "Created on disk: ", out_layer

..... BIG SNIP
do it again

Page 4 of 7

5 Run the script from within the your Python IDE. The syntax using PythonWin is shown as
follows, with the required parameters entered in the arguments line.

Everything works fine the first time.

>>> Creating layer : Maija_Poynts
Created on disk: C:/!test/Script_Demo/Shapefiles/Maija_Poynts.lyr

The next time you run it to show your
friends your genius, you get the error
message shown to the right.

The problem can originate from many
sources. For example, the variables
weren't explicitly cleared in the script
and upon closer examination, there are
file locks on the input shapefiles.

Go back to the interactive window and
use Python's dir function, the get a list of parameters still in memory.

>>> dir()
['__builtins__', '__doc__', '__name__', '__package__', 'arcpy', 'my_script', 'os',
'out_layer', 'path', 'pywin', 'sel_by', 'sel_from', 'sel_from_lyr', 'shp_name',
'sys']
>>>

The imported modules, arcpy, os and sys, are still present in memory as are all the variables
created by the script. These should be cleared out from memory. The simplest is to simply
close the PythonWin IDE. This will remove the file locks and the variable and import
information from memory.

Page 5 of 7

6 Time to step-up a grade. I am showing you the script that produced the layer files on disk,
performed the select by location then exported the results to a new shapefile. Your task is to
explain the lines that I haven't talked about.
'''
stub_02c.py

my_script script name and location
sel_from The layer to select feature from
sel_by The layer used to select the features in sel_from

copy the line below to the script arguments to test
"C:/!test/Script_Demo/Shapefiles/ Maija_Poynts.shp" "C:/!test/Script_Demo/Shapefiles/Polly_Ghon.shp"

'''
import arcpy
import os
import sys

Get the input parameters
num_args = len(sys.argv)
if num_args != 3:
 print "Read the script header for instructions"
 sys.exit()

arcpy.env.overwriteOutput = True # overwrite existing files if possible

my_script = sys.argv[0]
sel_from = sys.argv[1]
sel_by = sys.argv[2]

Make the feature layers and save to disk
path, shp_name = os.path.split(sel_from) # get the path and name
sel_from_lyr = shp_name.replace(".shp","") # same name, different
extension
out_layer = path + "/" + sel_from_lyr + ".lyr"
out_layer.replace("\\","/") # Ooooo more reading
print "Creating layer : ", sel_from_lyr
arcpy.MakeFeatureLayer_management(sel_from, sel_from_lyr) # create the output layer
arcpy.SaveToLayerFile_management(sel_from_lyr, out_layer,"RELATIVE")
print "Created on disk: ", out_layer

path, shp_name = os.path.split(sel_by)
sel_by_lyr = shp_name.replace(".shp","")
out_layer = path + "/" + sel_by_lyr + ".lyr"
out_layer.replace("\\","/")
print "Creating layer : ", sel_by_lyr
arcpy.MakeFeatureLayer_management(sel_by, sel_by_lyr)
arcpy.SaveToLayerFile_management(sel_by_lyr, out_layer,"RELATIVE")
print "Created on disk: ", out_layer

arcpy.SelectLayerByLocation_management(sel_from_lyr,"WITHIN",sel_by_lyr)
result_file = path + "/Result.shp"
arcpy.CopyFeatures_management(sel_from_lyr,result_file)
arcpy.SelectLayerByAttribute_management(sel_from_lyr,"CLEAR_SELECTION") # clear any
selection
print "Creating Select by Location output...", result_file

Clean up by deleting references to layers
arcpy.Delete_management(sel_from_lyr)
arcpy.Delete_management(sel_by_lyr)
arcpy.RefreshCatalog(path)

Page 6 of 7

