Hidden Gems
Working with shapefiles and record or
structured arrays (recarray)

recfunctions

Introduction

| came across a module that | had never heard about. This module, recfunctions, facilitates
working with record/structured arrays within the NumPy module. It provides many short cuts which
make it easier to work with shapefiles, as well as other data formats. My focus in this report is to
show how ArcMap's built-in arcpy functions can serve as links to some of the more powerful
capabilities of working with the NumPy module.

See the following links for discussion and documentation:

http://pyopengl.sourceforge.net/pydoc/numpy.lib.recfunctions.htmi
http://comments.gmane.org/gmane.comp.python.numeric.general/39537
http://stackoverflow.com/questions/5288736/adding-a-field-to-a-s tructured-numpy-array-2
https://github.com/numpy/numpy/blob/1€22553¢c37e9112bf2426c1b0602754 19f906d8d/num py/lib/recfunctions.py

The function, importing and its use are discussed briefly in the following sections. We will begin by
importing the module to see what it offers. The examples here, focus on the append_fields
function within the module. It is highlighted in the directory list for the module contents.

| have taken the liberty to bold-face sections of code in order to emphasize them. Also, python
syntax is highlighted in generally familiar colours.

Dan Patterson, Oct 28, 2014 v.3 Page 1 of 5

https://github.com/numpy/numpy/blob/1e22553c37e9112bf2426c1b060275419f906d8d/numpy/lib/recfunctions.py
http://stackoverflow.com/questions/5288736/adding-a-field-to-a-structured-numpy-array-2
http://comments.gmane.org/gmane.comp.python.numeric.general/39537
http://pyopengl.sourceforge.net/pydoc/numpy.lib.recfunctions.html

Importing the module, its contents and help

There are two ways to import the module depending upon the type of namespace you prefer. You
can import the module directly or by importing the specific module and changings its namespace,
giving it an alias. In the examples that follow, the second method will be used to make the code
easier to read.

A listing of the functions in the module can be listed using dir(function). The focus in this
document will be on append_fields.

>>> import numpy.lib.recfunctions # general import of recfunctions
>>> from numpy.lib import recfunctions as rfn # method used in these examples

>>> dir(rfn) # module contents

['MaskedArray', 'MaskedRecords', ' all ', ' builtins ', ' doc_ ', ' file ',

' name ', ' package ', ' check fill value', ' fix defaults', ' fix output’,
'_is_string_like', ' _izip fields', '_izip_ fields_flat', 'append fields',

'drop fields', 'find duplicates', 'flatten descr', 'get fieldstructure',K 'get names',
'get names flat', 'itertools', 'izip records', 'Jjoin by', 'ma', 'merge arrays',
'ndarray', 'np', 'rec append fields', 'rec drop fields', 'rec join', 'recarray',
'recursive fill fields', 'rename fields', 'stack arrays', 'sys', 'zip descr']

>>>

Help for a specific module is obtained using the help(function) syntax. The requirements for its
use are clearly listed as are the defaults. If you wish to use the defaults, you need not include a
reference to the option when generating the function requirements.

>>> help(rfn.append_fields)
Help on function append fields in module numpy.lib.recfunctions:

append_ fields (base, names, data, dtypes=None, fill value=-1, usemask=True,
asrecarray=False)
Add new fields to an existing array.

The names of the fields are given with the “names’ arguments,

the corresponding values with the “data’ arguments.

If a single field is appended, "names’, “data’ and “dtypes’ do not have
to be lists but just values.

Parameters
base : array

Input array to extend.
names : string, sequence

String or sequence of strings corresponding to the names

of the new fields.
data : array or sequence of arrays

Array or sequence of arrays storing the fields to add to the base.
dtypes : sequence of datatypes, optional

Datatype or sequence of datatypes.

If None, the datatypes are estimated from the “data’.

fill value : {float}, optional
Filling value used to pad missing data on the shorter arrays.
usemask : {False, True}, optional
Whether to return a masked array or not.
asrecarray : {False, True}, optional

Whether to return a recarray (MaskedRecords) or not.

Dan Patterson, Oct 28, 2014 v.3 Page 2 of 5

Sample project...

A sample point shapefile is shown in the figure to the

right. It consists of six points. The first four point form

both the exterior of a rectangle or the convex hull for
the six points, depending upon your interests.

The spatial reference for the object was defined as a

variant of UTM zone 18N...so technically, these points
are just north of the equator within the zone. | wanted

to make sure that real geometry was being used and
that includes a valid spatial reference.

The purpose of the exercise is to add two fields to the table and calculate Table o x
values for them. - B

Paints2 *
The angles formed by the points with respect to the center point will be FID | Shape*| Id
added to the first field. The point distances to the center will be calculated for |*— 53—
the second field. Finally, the output array will be sorted using a radial sorton | | 2 Point 0]
the angles previously derived. W a0

il 2/Point | ©
A new shapefile is created containing the original input data, the new fields o 1 n|[E=
and their calculated values. The actual process is contained in a script, but B ol e '

the whole procedure can be done using the command line. This document |
uses that approach so that the inputs and outputs can be readily identified.

The sample command line instructions are as follows:

Basic imports and inputs
>>> import numpy as np
>>>
>>>
>>>
>>> print SR.name
NAD 1983 CSRS_UTM Zone_ 18N
>>>

from numpy.lib import recfunctions as rfn
input_shp = 'C:\\temp\\Shapefiles\\Points2.shp'
SR =arcpy.Describe (input_shp) .spatialReference

Create the array from the existing shapefile

>>> fields =
>>> field names =
>>> print field names
[u'FID', u'Shape', u'Id']
>>> data =
>>> np_array = np.array (data)
>>> np array

arcpy.ListFields (input_shp)
[f.name for £ in fields]

B rtariay_shapefile_demourod - ArcMap.

N
= = Demo For Blog
=1 E
L
Faint Sets
Grid Sef

Line Sate

& Circle Bipse

w Bookmarks Intert Selection Geoprocesting Customize Windows Heip

7 B Generate Paints

& @ Geocoding Took

T @ Geostatstical Analyst Tools
£ @ Linzar Referencing Taols

£ B 5patial Analyst Toois

£ @ Spatiaf Statisnes Toals /!

M| e 0o —

2461 9521 Meters

arcpy.da.FeatureClassToNumPyArray (input_shp,field names,"", SR)

array(T(O, [o.o, o0.03, 0), (1, (0.0, 100.01, 0), (2, [100.0, 100.0], O),

(3, [100.0, 0.0]1, 0),
dtype=[('FID', '<i4'),
>>> temp_ array = np_array|[:]

Dan Patterson, Oct 28, 2014 v.3

(4, [50.0,
('Shape',

90.01,
'<£8',

0),
(2,)),

(5,

[50.0, 10.07],
('Id', '<id")])

01,

Page 3 of 5

Calculate the new values to add to the array

>>> #....snip ... methods to calculate angles and distance omitted to
>>> # simplify the presentation, so the following values will be
>>> #....used from the results

>>> angle = np.array([-135., 135., 45., -45., 90., -90.1])

>>> length = np.array([70.71067812, 70.71067812, 70.71067812, 70.71067812, 40.
1
>>> add flds = [angle, length]
>>>
>>> NOTE: I have wrapped the following to facilitate reading
>>>
>>> out_array= rfn.append fields(temp_ array,
names=('angle',k 'distance'),
data=add_flds,
dtypes=None,
usemask=False, asrecarray=False)

, 40.

>>>
>>> out_array
array([(O, [0.0, 0.0], O, -135.0, 70.71067812),
(1, [0.0, 100.0], O, 135.0, 70.71067812),
(2, [100.0, 100.0], O, 45.0, 70.71067812),
(3, [100.0, O0.0], O, -45.0, 70.71067812),
(4, [50.0, 90.0], O, 90.0, 40.0), (5, [50.0, 10.0], O, -90.0, 40.0)71,
dtype=[('FID', '<i4'), ('Shape', '<£f8', (2,)), ('Id', '<i4'), ('angle',6 '<f8'"),
('distance', '<f8')])
>>>

Sort the array using the angle field
>>> indices = (angle.argsort().tolist())
>>> indices.reverse ()
>>> sorted_array = np.array([out_array[i] for i in indices])
>>> sorted_array
array([(1, [0.0, 100.0], O, 135.0, 70.71067812),
(4, [50.0, 90.0], O, 90.0, 40.0),
(2, [100.0, 100.0], O, 45.0, 70.71067812),
(3, [100.0, O0.0], O, -45.0, 70.71067812),
(5, [50.0, 10.0], O, -90.0, 40.0),
(0, [0.0, 0.0], 0, -135.0, 70.71067812)],
dtype=[('FID', '<i4'), ('Shape',6 '<f8', (2,)), ('Id', '<i4'), ('angle'K '<£f8'"),
('distance', '<f8')])

Create the output shapefile using the new data
>>> field names = data_types.names
>>> field names
('FID', 'Shape', 'Id', 'angle',6 'distance')
>>> SR.name
u'NAD_1983 CSRS_UTM Zone 18N’

>>>

>>> output_shp = "c:/temp/Points2_sorted.shp"

>>> arcpy.da.NumPyArrayToFeatureClass (sorted array, output shp, field names, SR)
>>> output_shp = "c:/temp/Points2_sorted.shp"

>>> geom_fields = ('Shape')
>>> arcpy.da.NumPyArrayToFeatureClass (sorted_array, output_shp, geom fields, SR)

Dan Patterson, Oct 28, 2014 v.3 Page 4 of 5

The results are shown in the figure to
the right.

The coordinate geometry values were
also calculated within ArcMap and
added to the table, as a check on the
input values.

You should note that the old FID field
(feature ID), has been retained but
renamed to FID_ so one can identify the
initial and final point order resulting from
the sorting process.

This example only scratches the surface
of what can be done with recfunctions
and its tools.

More examples to follow.

Dan Patterson, Oct 28, 2014 v.3

) ndarray_shepefile_demo.md - ArcMap lmﬁ'ri-'@‘lm
File Edit View Bookmarks Insert Sefection Geoprocessing Customize Windows Help
JEEsS g Ll + - | 12500 RS S
EERAN- JHHHE R A B LBE: AT R Ely : Ftar-
Table Of Contents 7= 1 2 =
[aerd - S .
|| FI = Demo For Blog
Bl Poins2 sorted
.
= £ Points2
@
5
[= Point Sets 1 L 3
L] -
U
M & Grd Set = E
Table ox
& Lina Sats SR Al
FointsZ_sarted *
e
1l £F Circle Ellipse FID | shape | FID | 1d [angle [distance X calc ¥ calc
| 0 Point 1 [} 135] 70710678 [N 100
1 Peint 4 o a0 40 50 90
1l 2 Point 2] © 45| 70710578 100 100
i 3 Poinl 3 o 45| 70710878 100 3]
| | 4 Point 5 L5} 290 | A0 S0 10
L 4 : - m__ . - '
| o o ov on EE (0 outof 6 Selected) -
I @ | Points2_sorted
' AscTonibox B Tabig

Page 5of 5

