
Hidden Gems

Working with shapefiles and record or

structured arrays (recarray)

recfunctions

Introduction

I came across a module that I had never heard about. This module, recfunctions, facilitates
working with record/structured arrays within the NumPy module. It provides many short cuts which
make it easier to work with shapefiles, as well as other data formats. My focus in this report is to
show how ArcMap's built-in arcpy functions can serve as links to some of the more powerful
capabilities of working with the NumPy module.

See the following links for discussion and documentation:

http://pyopengl.sourceforge.net/pydoc/numpy.lib.recfunctions.html
http://comments.gmane.org/gmane.comp.python.numeric.general/39537
http://stackoverflow.com/questions/5288736/adding-a-field-to-a-structured-numpy-array-2
https://github.com/numpy/numpy/blob/1e22553c37e9112bf2426c1b060275419f906d8d/numpy/lib/recfunctions.py

The function, importing and its use are discussed briefly in the following sections. We will begin by

importing the module to see what it offers. The examples here, focus on the append_fields
function within the module. It is highlighted in the directory list for the module contents.

I have taken the liberty to bold-face sections of code in order to emphasize them. Also, python
syntax is highlighted in generally familiar colours.

Page 1 of 5Dan Patterson, Oct 28, 2014 v.3

https://github.com/numpy/numpy/blob/1e22553c37e9112bf2426c1b060275419f906d8d/numpy/lib/recfunctions.py
http://stackoverflow.com/questions/5288736/adding-a-field-to-a-structured-numpy-array-2
http://comments.gmane.org/gmane.comp.python.numeric.general/39537
http://pyopengl.sourceforge.net/pydoc/numpy.lib.recfunctions.html

Importing the module, its contents and help

There are two ways to import the module depending upon the type of namespace you prefer. You
can import the module directly or by importing the specific module and changings its namespace,
giving it an alias. In the examples that follow, the second method will be used to make the code
easier to read.

A listing of the functions in the module can be listed using dir(function). The focus in this

document will be on append_fields.

>>> import numpy.lib.recfunctions # general import of recfunctions

>>> from numpy.lib import recfunctions as rfn # method used in these examples

>>> dir(rfn) # module contents
['MaskedArray', 'MaskedRecords', '__all__', '__builtins__', '__doc__', '__file__',
'__name__', '__package__', '_check_fill_value', '_fix_defaults', '_fix_output',

'_is_string_like', '_izip_fields', '_izip_fields_flat', 'append_fields',
'drop_fields', 'find_duplicates', 'flatten_descr', 'get_fieldstructure', 'get_names',
'get_names_flat', 'itertools', 'izip_records', 'join_by', 'ma', 'merge_arrays',
'ndarray', 'np', 'rec_append_fields', 'rec_drop_fields', 'rec_join', 'recarray',
'recursive_fill_fields', 'rename_fields', 'stack_arrays', 'sys', 'zip_descr']
>>>

Help for a specific module is obtained using the help(function) syntax. The requirements for its
use are clearly listed as are the defaults. If you wish to use the defaults, you need not include a
reference to the option when generating the function requirements.

>>> help(rfn.append_fields)
Help on function append_fields in module numpy.lib.recfunctions:

append_fields(base, names, data, dtypes=None, fill_value=-1, usemask=True,
asrecarray=False)
 Add new fields to an existing array.

 The names of the fields are given with the `names` arguments,
 the corresponding values with the `data` arguments.
 If a single field is appended, `names`, `data` and `dtypes` do not have
 to be lists but just values.

 Parameters

 base : array
 Input array to extend.
 names : string, sequence
 String or sequence of strings corresponding to the names
 of the new fields.
 data : array or sequence of arrays
 Array or sequence of arrays storing the fields to add to the base.
 dtypes : sequence of datatypes, optional
 Datatype or sequence of datatypes.
 If None, the datatypes are estimated from the `data`.
 fill_value : {float}, optional
 Filling value used to pad missing data on the shorter arrays.
 usemask : {False, True}, optional
 Whether to return a masked array or not.

 asrecarray : {False, True}, optional
 Whether to return a recarray (MaskedRecords) or not.

Page 2 of 5Dan Patterson, Oct 28, 2014 v.3

Sample project...

A sample point shapefile is shown in the figure to the
right. It consists of six points. The first four point form
both the exterior of a rectangle or the convex hull for
the six points, depending upon your interests.

The spatial reference for the object was defined as a
variant of UTM zone 18N...so technically, these points
are just north of the equator within the zone. I wanted
to make sure that real geometry was being used and
that includes a valid spatial reference.

The purpose of the exercise is to add two fields to the table and calculate
values for them.

The angles formed by the points with respect to the center point will be
added to the first field. The point distances to the center will be calculated for
the second field. Finally, the output array will be sorted using a radial sort on
the angles previously derived.

A new shapefile is created containing the original input data, the new fields
and their calculated values. The actual process is contained in a script, but
the whole procedure can be done using the command line. This document
uses that approach so that the inputs and outputs can be readily identified.

The sample command line instructions are as follows:

Basic imports and inputs
>>> import numpy as np
>>> from numpy.lib import recfunctions as rfn
>>> input_shp = 'C:\\temp\\Shapefiles\\Points2.shp'
>>> SR =arcpy.Describe(input_shp).spatialReference
>>> print SR.name
NAD_1983_CSRS_UTM_Zone_18N
>>>

Create the array from the existing shapefile
>>> fields = arcpy.ListFields(input_shp)
>>> field_names = [f.name for f in fields]
>>> print field_names
[u'FID', u'Shape', u'Id']
>>> data = arcpy.da.FeatureClassToNumPyArray(input_shp,field_names,"",SR)
>>> np_array = np.array(data)
>>> np_array
array([(0, [0.0, 0.0], 0), (1, [0.0, 100.0], 0), (2, [100.0, 100.0], 0),
 (3, [100.0, 0.0], 0), (4, [50.0, 90.0], 0), (5, [50.0, 10.0], 0)],
 dtype=[('FID', '<i4'), ('Shape', '<f8', (2,)), ('Id', '<i4')])
>>> temp_array = np_array[:]

Page 3 of 5Dan Patterson, Oct 28, 2014 v.3

Calculate the new values to add to the array
>>> #....snip ... methods to calculate angles and distance omitted to
>>> # simplify the presentation, so the following values will be
>>> #....used from the results
>>> angle = np.array([-135., 135., 45., -45., 90., -90.])
>>> length = np.array([70.71067812, 70.71067812, 70.71067812, 70.71067812, 40. , 40.
])
>>> add_flds = [angle, length]
>>>
>>> NOTE: I have wrapped the following to facilitate reading
>>>
>>> out_array= rfn.append_fields(temp_array,

 names=('angle','distance'),
 data=add_flds,
 dtypes=None,
 usemask=False, asrecarray=False)

>>>
>>> out_array
array([(0, [0.0, 0.0], 0, -135.0, 70.71067812),
 (1, [0.0, 100.0], 0, 135.0, 70.71067812),
 (2, [100.0, 100.0], 0, 45.0, 70.71067812),
 (3, [100.0, 0.0], 0, -45.0, 70.71067812),
 (4, [50.0, 90.0], 0, 90.0, 40.0), (5, [50.0, 10.0], 0, -90.0, 40.0)],
 dtype=[('FID', '<i4'), ('Shape', '<f8', (2,)), ('Id', '<i4'), ('angle', '<f8'),
('distance', '<f8')])
>>>

Sort the array using the angle field
>>> indices = (angle.argsort().tolist())
>>> indices.reverse()
>>> sorted_array = np.array([out_array[i] for i in indices])
>>> sorted_array
array([(1, [0.0, 100.0], 0, 135.0, 70.71067812),
 (4, [50.0, 90.0], 0, 90.0, 40.0),
 (2, [100.0, 100.0], 0, 45.0, 70.71067812),
 (3, [100.0, 0.0], 0, -45.0, 70.71067812),
 (5, [50.0, 10.0], 0, -90.0, 40.0),
 (0, [0.0, 0.0], 0, -135.0, 70.71067812)],
 dtype=[('FID', '<i4'), ('Shape', '<f8', (2,)), ('Id', '<i4'), ('angle', '<f8'),
('distance', '<f8')])

Create the output shapefile using the new data
>>> field_names = data_types.names
>>> field_names
('FID', 'Shape', 'Id', 'angle', 'distance')
>>> SR.name
u'NAD_1983_CSRS_UTM_Zone_18N'
>>>
>>> output_shp = "c:/temp/Points2_sorted.shp"
>>> arcpy.da.NumPyArrayToFeatureClass(sorted_array, output_shp, field_names, SR)
>>> output_shp = "c:/temp/Points2_sorted.shp"
>>> geom_fields = ('Shape')
>>> arcpy.da.NumPyArrayToFeatureClass(sorted_array, output_shp, geom_fields, SR)

Page 4 of 5Dan Patterson, Oct 28, 2014 v.3

The results are shown in the figure to
the right.

The coordinate geometry values were
also calculated within ArcMap and
added to the table, as a check on the
input values.

You should note that the old FID field
(feature ID), has been retained but
renamed to FID_ so one can identify the
initial and final point order resulting from
the sorting process.

This example only scratches the surface
of what can be done with recfunctions
and its tools.

More examples to follow.

Page 5 of 5Dan Patterson, Oct 28, 2014 v.3

