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 It’s a Model
Quantifying uncertainty in elevation models using kriging
By Konstantin Krivoruchko and Kevin Butler, Esri

Raster based digital elevation models (DEM) 
are the basis of some of the most important 
GIS workflows: hydrologic modeling, site 
suitability, and cost path analysis. While 
there are several techniques for generating 
digital elevation models (DEMs), none of 
them can produce a true elevation surface. 
Locally varying measurement error and the 
inexactness of the interpolation methods 
contribute to the uncertainty of the model’s 
estimate of the true elevation value. Kriging 
models and geostatistical simulations avail-
able in the Geostatistical Analyst extension 
for ArcGIS 10.1 for Desktop to quantify the 
spatially varying uncertainty of a DEM de-
rived from lidar data.

Creating a DEM from Lidar Data
Lidar data is increasingly used as the base 
data for DEM creation. Topographic mapping 

lidar instruments direct laser pulses from an 
airborne platform toward the ground and 
record the time required for the pulse to 
return. Combined with accurate information 
about the position, roll, pitch and heading of 
the lidar instrument, accurate three-dimen-
sional points are generated for any reflective 
surface the laser pulses hits. This includes 
above ground features such as buildings and 
trees. Through post-processing, lidar points 
are classified by the type of object that re-
flected the laser pulse such as bare earth, tree 
canopy, or water. For DEM creation, all above 
ground features are removed. This causes 
the sampling density of the bare earth lidar 
points to vary widely based on the frequency 
of above ground features.
 The next step in the DEM creation pro-
cess involves generating a surface from the 
bare earth points. ArcGIS for Desktop has 

a powerful set of tools for creating raster 
DEMs from lidar points. (See the ArcGIS 10.1 
help topic Creating raster DEMs and DSMs 
from large lidar point collections.) 
 These tools use simple rules for assigning 
values to the raster cells such as the maxi-
mum or average elevation or use determin-
istic interpolation techniques to create an 
elevation surface from the lidar points. They 
produce elevation surfaces suitable for many 
GIS applications that are not sensitive to 
DEM uncertainty. GIS analysts often choose 

 Figure 1a: Landscape represented using a 
small cell size.

 Figure 1b: Somewhat generalized land-
scape resulting from a moderate cell size.

 Figure 1c: Highly abstract landscape 
resulting from a large cell size.
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Generating DEMs Using 
Geostatistical Interpolation and 
Simulations
The sampling density of bare earth lidar 
points will vary greatly based on the fre-
quency of above ground features such as 
trees or buildings. Lidar density and the 
desired output cell size will result in raster 
cells with different numbers of lidar points.
 Figure 2 illustrates the effects of these dif-
ferences in point density. When the number 
of lidar points in each raster cell is low (on 
average one to two points per raster cell), it 
is sufficient to use one kriging prediction per 
the cell because additional predictions and 
their errors should be very similar. 
 When the lidar point density relative to 
the target raster resolution is moderate (5 to 
25 points per cell), it is better to use block 
kriging, which makes several predictions in 
the grid cell using the same searching neigh-
borhood without additional model fitting. 
 When the lidar point density relative to 
the target raster resolution is high (on aver-
age greater than 30 points per raster cell), 
the elevation inside the cell may vary signifi-
cantly. Accurately averaging many predic-
tions, that use a variety of search neighbor-
hoods, is required. This can be done using 
conditional geostatistical simulations. 

Importance of Estimating DEM 
Uncertainty
It is common practice in GIS workflows to 

treat a DEM not as a model but as the true 
elevation surface. The following five use cases 
demonstrate how elevation uncertainty can 
dramatically impact the results of an analysis.
Siting a new fire lookout tower
A park manager used a GIS-based suitability 
model to choose ten possible locations for a 
new fire lookout tower. Even a small eleva-
tion error at a candidate sight could greatly 
change the effective viewing area for the 
tower. To evaluate each location, the man-
ager needs to know the exact elevation at 
each candidate site. 
 A DEM can’t answer this question exactly. 
The value of the cell containing a candidate 
site is an averaged, locally smoothed or is a 
chosen value (i.e., minimum, maximum, or 
random) from the many different possible 
elevations that fall within the cell’s extent. 
While kriging methods couldn’t answer the 
elevation question either, these methods 
could tell that park manager that the candi-
date site would fall within a specific eleva-
tion range within a degree of certainty, for 
example, of 90 percent.
Delineating a watershed
A hydrologist is delineating a watershed 
and needs to identify and fill sinks to create 
a depressionless DEM. To help determine 
reasonable elevation differences between 
sinks and their pour points, the hydrologist 
needs to know the lowest elevation in the 
landscape. Kriging can tell the hydrologist, 
with a specific level of certainty, that the 

 Figure 2:Differences in the number of points per raster cell require different methods for DEM generation. Kriging is sufficient for cells 
with a small number of points. Block kriging can be used for moderate numbers of points. Geostatistical conditional simulations are 
required when cells have a large number of points.

Case 1: Low number of points 
per raster cell

Case 2: Moderate number of 
points per raster cell

Case 3: Large number of points 
per raster cell

deterministic interpolation techniques 
because they are based on simple formulas 
that don’t tax computer resources and can 
handle a very large number of points. 
 An alternative to deterministic algo-
rithms, probablistic statistical interpola-
tion methods such as kriging, have several 
advantages over deterministic methods. 

“Empirical Bayesian Kriging: Implemented 
in ArcGIS Geostatistical Analyst,” an article 
in the Fall 2012 issue of ArcUser magazine 
discusses these advantages in detail. 
 Historically, it was difficult to implement 
kriging on the massive number of points 
generated using lidar. Most implementa-
tions of kriging methods required manu-
ally adjusting parameters in order to receive 
accurate results. An important part of any 
interpolation workflow is to select an ap-
propriate cell size for the output DEM raster. 
(Figure 1 illustrates the effects of cell size 
using a landscape painting displayed using 
different cells sizes.) Cell size determines 
the level of detail the raster can represent. A 
small cell size can represent more detail but 
will consume additional computer resourc-
es. A larger cell size consumes less computer 
resources but can overgeneralize the eleva-
tion surface. ArcGIS 10.1 introduced a new 
method, empirical Bayesian kriging (EBK) 
that automates some of the difficult aspects 
of building an optimal kriging model. 
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lowest elevation is smaller than some value. 
For example, by using kriging, the hydrolo-
gist might learn in this case that the lowest 
elevation is smaller than 800 feet with 99 
percent certainty.
Siting a cell phone tower
An engineer, who is siting a new cell phone 
tower near an airport, has chosen a can-
didate site. The cell phone tower is 50 feet 
tall and the site has an elevation of 950 feet. 
Strict zoning regulations prohibit any struc-
ture near the airport that is more than 1,000 
feet in height. The engineer needs to know 
the probability that the elevation of the can-
didate site is greater than 950 feet. Kriging 
methods will provide a specific probabil-
ity that a cell’s elevation exceeds a certain 
height at the proposed site or any other site 
in the raster.
Optimizing irrigation system design
To minimize water usage, a golf course 
manager used a GIS model to determine 
the optimal layout for an irrigation system. 
The model is dependent on an accurate flow 
direction raster. Examining the standard 
error of prediction surface created through 
kriging, the manager could identify areas 
where the uncertainty of the elevation was 
high, which would influence the accuracy of 
the flow direction. The manager could use 
these areas to assess the ground truth of the 
GIS model. 
Assessing maximum elevation for a region
Based on the assumption that the highest 

elevation in the region is 1,000 feet, a mili-
tary analyst has located an asset in a rela-
tively hidden location. The analyst wants 
to know the probability that the elevation 
exceeds 1,000 feet for at least at one point 
in the region. Kriging methods will provide 
a specific probability that the elevation of 
1,000 feet is exceeded.

Creating an Elevation Prediction 
Error Map using EBK
An elevation prediction map and prediction 
error map were generated for a four county 
area in northeast Ohio using the empirical 
Bayesian kriging (EBK) geoprocessing tool in 
ArcGIS 10.1. A model, which filters out local 
trends, intrinsic random function kriging, 
was used. Using the LAS to Multipoint tool 
from the 3D Analyst toolbox, approximately 
842 million bare earth lidar points were con-
verted to a multipoint feature class. This fea-
ture class was used as the input for kriging.
 Figure 3a shows the predicted eleva-
tion surface for the glaciated topography 
of northeastern Ohio. Figure 3b shows a 
standard error of prediction surface, also 
produced using kriging. It is clear that the 
prediction errors are spatially non-homoge-
neous. Large portions of the Cuyahoga River 
valley have significant elevation errors (as 
estimated by kriging) in the range of 8 to 15 
feet. Here, elevation is changing rapidly and 
abruptly thus promoting uncertainty in the 
elevation prediction. 

 Exploring the prediction error at a small-
er scale demonstrates more clearly how 
the errors are spatially non-homogeneous. 
Figures 4a and 4b show the predicted eleva-
tion and prediction error for a portion of the 
highly eroded Cuyahoga River valley and its 
surrounding area. Interestingly, the topog-
raphy of the area can be seen as clearly in 
the error surface as in the predicted surface. 
This example demonstrates the importance 
of spatially varying DEM error for hydrologi-
cal applications. 

Incorporating Uncertainty in GIS 
Workflows
The prediction standard errors quantify the 
uncertainty of the elevation at each location. 
Assuming that predicted elevation values 
follow a normal distribution, 95 percent of 
the time the true elevation value will fall 
within the range of (predicted elevation 
value - 1.96 * prediction standard error) to 
(predicted elevation value + 1.96 * predicted 
standard error). 
 The DEM prediction normality assump-
tion is usually very reasonable. However, for 
very important applications, the input data 
can be transformed to a normal distribution 
to guarantee that the normality assumption 
holds. For a particular raster cell, suppose 
the estimated elevation value is 1,000 feet 
and the standard error of prediction is 10 
feet. With 95 percent confidence, the true 
elevation value would be somewhere in the 

 Figure 3a: Predicted elevation surface for northeastern Ohio 
created using kriging.

 Figure 3b: Standard error of prediction surface.



25 au Summer 2013 esri.com

range of 980.4 feet to 1,019.6 feet. 
 One way to incorporate uncertainty into a 
GIS workflow is to use the Raster Calculator 
tool to adjust the elevation estimates by their 
prediction errors. This workflow involves 
running an analysis using the predicted el-
evation DEM, adjusting the elevation raster 
by the prediction standard errors, and run-
ning the analysis again. The decision to add 
or subtract the prediction standard error 
values depends on the type of problem. For a 
viewshed application, it might be best to in-
crease the elevation values by the prediction 
error to investigate the worst case scenario. A 
hydrological application for identifying sinks 
might require a decrease the elevation values. 
 Note that random generation from the 
Gaussian distribution with mean value 

equals kriging prediction and standard 
deviation equals prediction standard error 
should not be used because this will destroy 
the spatial correlation between neighboring 
locations. Any potential error in elevation 
will be propagated to products derived from 
elevation such as slope and aspect. These 
errors can influence spatial decision making. 
 A modeling case study demonstrates the 
consequencs of treating a model as a true 
elevation surface. Suppose a regional park 
system has proposed a new recreation trail. 
To maintain the integrity of the trail and the 
safety of park patrons, park managers con-
cluded that erosion control measures should 
be constructed anywhere along the trail 
where the slope of the adjacent embank-
ment is greater than 20 degrees. 

Special Section

 Figure 5a shows the slope derived from the 
publically available DEM that was derived 
from lidar data. Based on this map, a portion 
of the trail would require erosion control 
measures. However, when the slope is de-
rived from elevation values decreased by the 
standard error (shown in Figure 5b), a much 
larger portion of the trail requires remedia-
tion. When the slope is derived from the ele-
vation values increased by the standard error 
(shown in Figure 5c), a smaller portion of the 
trail would require erosion control measures. 
Assuming that the DEM represents the true 
elevation surface could potentially cause 
park managers to incorrectly estimate the 
cost of the erosion control measures and, in 
a worst case scenario, decide that the trail is 
too expensive to construct.

 Figure 4a: Predicted elevation surface for a portion of the 
Cuyahoga River valley.

 Figure 5a: Slope along proposed trail 
based on public available DEM

 Figure 5b: Slope along proposed trail 
when elevation values were decreased by 
elevation error

 Figure 5c: Slope along proposed trail 
when elevation values were increased by 
elevation error

 Figure 4b: Standard error of prediction surface for a portion of 
the Cuyahoga River valley.
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 Another method of incorporating uncer-
tainty into GIS workflows is geostatistical 
simulation. Rather than just producing a 
single surface with an estimate of prediction 
error, hundreds or even thousands of surfac-
es are produced. These simulated surfaces all 
have the same values at sampled locations 
(e.g., lidar points) but deviate from one an-
other at unsampled locations. All the urfaces 
have the same statistical characteristics. 
 The average of all simulations tends toward 
the original surface produced by kriging. To 

use geostatistical simulation to quantify 
DEM uncertainty, create a DEM using simple 
kriging (only simple kriging layers are sup-
ported at this time). Next, use the Gaussian 
Geostatistical Simulations (GGS) tool in the 
Geostatistical Analyst toolbox to create 100 
or more simulated surfaces. The GGS tool 
has an option to post-process the simulated 
rasters on a cell-by-cell basis and produce a 
new raster that summarizes the simulations. 
Based on the user’s preference, the summary 
raster can contain the minimum, maximum, 

mean, median (and a number of other statis-
tics) of the simulated rasters. 
 Use the summarized raster as the el-
evation surface for the remainder of the GIS 
workflow. How the simulations are summa-
rized depends on the type of problem being 
solved. To use several of the previously cited 
case studies, the analyst deleanating the 
watershed may want to use the minimum 
cell values from the simulations while the 
engineer siting the cell phone tower may 
want to use the maximum cell values from 
the simulations. 
 Geostatistical simulations better reflect 
the data variability between measurements. 
Their production requires a valid kriging 
model. Figure 6 shows four key dialog boxes 

 Modeling fitting using the Geostatistical Wizard
 Figure 6a: The interpolated surface for the entire area around the proposed trail
 Figure 6b: Data residuals transformed to Gaussian distribution. 
 Figure 6c: The fitted semivariogram model describing the correlation of the residuals. 
 Figure 6d: The model diagnostics show that the kriging model was well fitted.
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from the Geostatistical Wizard that illustrate steps in the model 
fitting process. Since the elevation values are, on average, slowly 
changing along the trail, the data detrending option was used. 
The data residuals (i.e., the difference between measured values 
and estimated trend at the data locations) were transformed to 
Gaussian distribution as shown in Figure 6b. The fitted semivari-
ogram model describing the correlation of the residuals is shown 
in Figure 6c. The model diagnostics in Figure 6d show that the 
kriging model was well fitted. (Detailed instructions on fitting a 
kriging model can be found Spatial Statistical Data Analysis for GIS 
Users, published by Esri Press.) 
 The simulation workflow was applied to the problem of estimat-
ing erosion control measures needed for the park trail previously 
mentioned. A simple kriging model was fitted to the data and 100 
simulated elevation rasters generated. Slope was calculated for all 
100 rasters. Figure 7 shows locations where a slope of greater than 
20 degrees was found in at least one of the 100 simulations. This 
area is much larger than that delineated by using the publically 
available raster or adjusting by the prediction error. While this is a 
conservative estimate of the areas that could require erosion con-
trol, it highlights the high level of uncertainty in elevation at this 
location. Alternatively, the number of times a slope greater than 20 
degrees was found in each cell could be calculated and visualized 
to depict the approximate probability that the slope exceeds the 
threshold value.

Special Section

 Figure 7: Areas along proposed trail with 
slope greater than 20 degrees in at least 
one of the 100 simulations

Conclusion
Digital elevations models are just that—models. They repre-
sent elevation values but assuming they represent the true 
elevation values can lead to incorrect or unrealistic results 
from a GIS analysis. Kriging methods can help quantify the 
level of uncertainty associated with elevation. Once the level 
of uncertainty is known, it can be used to adjust the elevation 
value to create worst and best case scenarios. Alternatively, 
geostatistical simulations can be used to create many pos-
sible realizations of an elevation surface that can be further 
used in geoprocessing. 
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