

Design a Geodatabase

Rasu Muthurakku, Enterprise Solutions Architect / Consultant

Agenda Design a Geodatabase

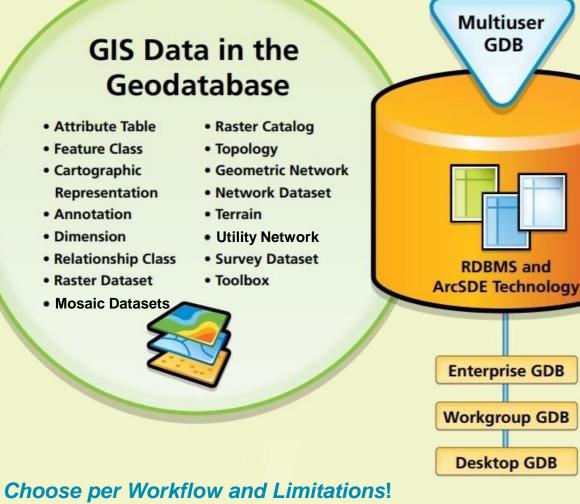
- Overview
- Key Factors
- Geodatabase Design
- Recommendations

Key Considerations, Best Practices, Recommendations and Lessons Learned!

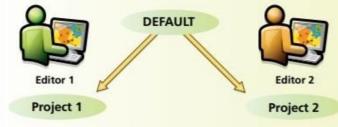
Overview

What is a Geodatabase (GDB)?

Collection of Geographic Datasets of Various Types Stored in:


- Common File System Folder
- Microsoft Access Database
- Multiuser RDBMS * / ArcSDE
 - Oracle
 - Microsoft SQL Server
 - PostgreSQL
 - IBM DB2, Informix
 - SAP Hana 2.0 SPS02
- Native Data Structure for ArcGIS
- Primary Data Format Used for Editing and Data Management
- Comprehensive Approach to Modeling and Managing Spatial Data

	Feature Dataset Contains spatially-related feature classes together with the topology and network objects that bind them. Feature classes in a feature dataset have spatial reference.
	Feature class A table with a shape field containing point, line, or polygon geometries for geographic features. Each row is a feature.
	Table A collection of rows, each containing the same fields. Feature classes are tables with shape feilds. Domain Defines a set or range of valid values for a field.
E	Relationship class Associates objects from a feature class or table to objects in another feature class or table. Relationship classes can optionally have user-defined fields.
Ē	Topology Integrity rules that define the behavior of geographically-integrated features.
÷	Geometric network Rules for managing connectivity among features in a set of feature classes.
	Survey dataset Contains survey measurements which are used to calculate coordinates linked to feature geometries in survey-aware feature classes.
	Raster dataset Contains rasters which represent continous geographic phenomena.
Data	Metadata document An XML document that can be associated with every dataset, commonly used in ArcIMS and other server applications.
	Geoprocessing tools A collection of dataflow and workflow processes for performing data managment, analysis, and modeling.


Functionality

Types of Geodatabases

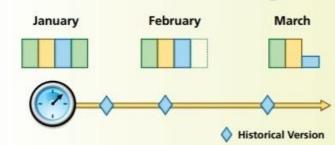
Single-user GDB File GDB Personal GDB

Versioning

Versioning is the framework that enables multiple users to access and edit the same data simultaneously and provides long transaction (i.e., database changes that span long periods of time) support.

Geodatabase Replication

Synchronize



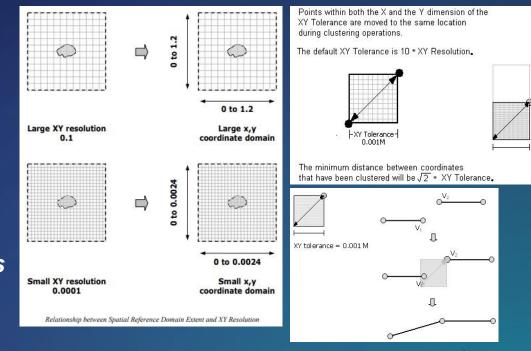
Parent Replica Child Replica

Enables GIS data to be shared across two or more geodatabases. Data changes can be made in each geodatabase, then synchronized. Two-way, one-way, and checkout/check-in replication workflows are supported.

Geodatabase Archiving

When enabled on a dataset, archiving captures any and all changes made to the dataset in the DEFAULT version of the multiuser geodatabase.

Key Factors


Expensive Rework

A Stitch in Time Saves Nine!

- Data Model Designs
 - Change in XY Resolution / Tolerance
 - Multiple Projections
 - Objectid as Primary Key for Relationship Classes
 etc.
- Data Conversion Specifications
 - Extra Vertices
 - Insufficient QA/QC
 - Large Feature Extent
 - Possibly by Data Conversion / Testing
 - Loading Static Raster Data Into GDB

- etc.

Avoid Pitfalls!

Degraded Performance and Scalability Risks

- Workflow
 - Number of Outstanding Versions
 - Versioning Levels
 - Archiving
 - etc.
- Maintenance
 - Compact and Compress FGDB (File Geodatabase)
 - Total Delta Table Records
 - GDB Maintenance
 - etc.

Versioning statistics

Number of versions: 18,055 Number of versions blocking DEFAULT: 5,966 Top 5 blocking versions... GIS.Test_241625 RASU.WORK_ORDER1 ANDREW.ARCGIS_MONITOR1 ARCFM.SESSION_1254 ADMIN.Freeze_2018 Number of states: 20,139 Number of state lineages: 9,497,416 DEFAULT versions lineage length: 1,068 Last compress: JUN-18-2018

SQL > Exec DBMS_STATS.GATHER_SCHEMA_STATS ('ARCFM', estimate_percent=>100, DEGREE=> 15, CASCADE=>TRUE, No_Invalidate=>false); PL/SQL procedure successfully completed.

---ArcSDE A Table Rows

SQL> select sum(num_rows) as Total_A_Table_Rows from dba_tables where table_name in (select 'A'||registration_id from sde.table_registry);

TOTAL_A_TABLE_ROWS 12,154,746

--ArcSDE D Table Rows DL> select sum(num_rows) as Total_D_Table_Rows from dba_tables where table_name in (select 'D'||registration_id from sde.table_registry);

TOTAL_D_TABLE_ROWS 9,338,738

Separate Myths / Emotions from Evidence Based Facts!

Requirements and Workflows

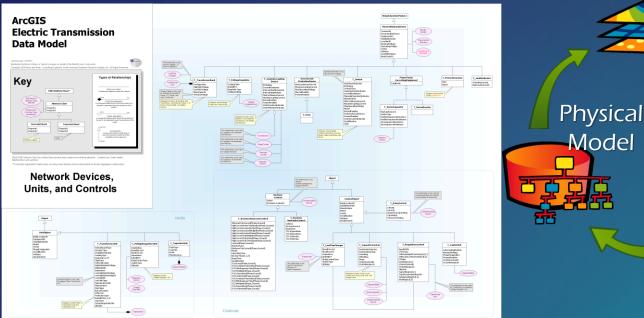
Drives the Selection and Number of GDBs!

- Number of Users and Types of Users
- Workflows
 - Multi User Editing Enterprise / Workgroup GDBs
 - Single User Editing FGDB
 - Replication EGDB → FGDB / EGDB
 - Read Only / Publication FGDB / EGDB
 - etc.

Enterprise Geodatabase Vs File Geodatabase				
Key Characteristics	Enterprise Geodatabase	File Geodatabase		
Description	A collection of various types of GIS datasets held as tables in a relational database.	A collection of various types of GIS datasets held in a file system folder.		
Number of users	Multiuser: many readers and many writers	Single editor and can support multiple readers.		
Storage format	Oracle	Each dataset is a separate file on disk. All the datasets that belong to one geodatabase are contained in a single folder.		
	Microsoft SQL Server			
	IBM DB2, Informix			
	PostgreSQL			
	SAP HANA			
Size limits	Size is controlled by the DBMS	By default, each dataset can grow to one TB. Th 1 TB limit can be raised to 4 or 256 TB for extremely large image datasets. Each feature class can scale up to hundreds of millions of vector features per dataset.		
Y	Fully supported across all DBMSs	Does not support versioning workflows		
Versioning support	Note:SAP HANA geodatabases do not support the traditional versioning type, but only Branch Versioning.			
Platforms	The DBMS are supported on multiple operating systems. Consult the system requirements for the full list.	Cross-platform.		
Security and permissions	Managed by the DBMS.	Managed by the operating system.		

Generally more than one Geodatabase is required!

Geodatabase Design


Geodatabase Design – Data Modeling

Conceptual Design

- Identify Business Requirements
- Identify Thematic Layers
- Identify Required Applications
- Leverage Data Model Templates
- Document

Logical Design

- Define Tabular Database Structure
- Define Relationships
- Determine Spatial Properties
- Document

- Physical Design
 - **Create and Implement Model Design**
 - Generate Physical Schema in the RDBMS / FGDB

€onceptual

Model

Logical

Model

- Testing and Validation
- Document

Geodatabase Design – Process

Tools

- X-Ray Add-In
- **Geodatabase Diagrammer**

Identify the

Information

Products for GIS

- Sparx Systems' Enterprise Architect
- Geometric Network Configuration Manager

Build a Working

Prototype. Review

and Refine design

Identify the Key

Data Themes Per

Requirements

Speci

Ranges a

Represe

Properties.

Assign

Responsibilities for

Building and

Maintaining

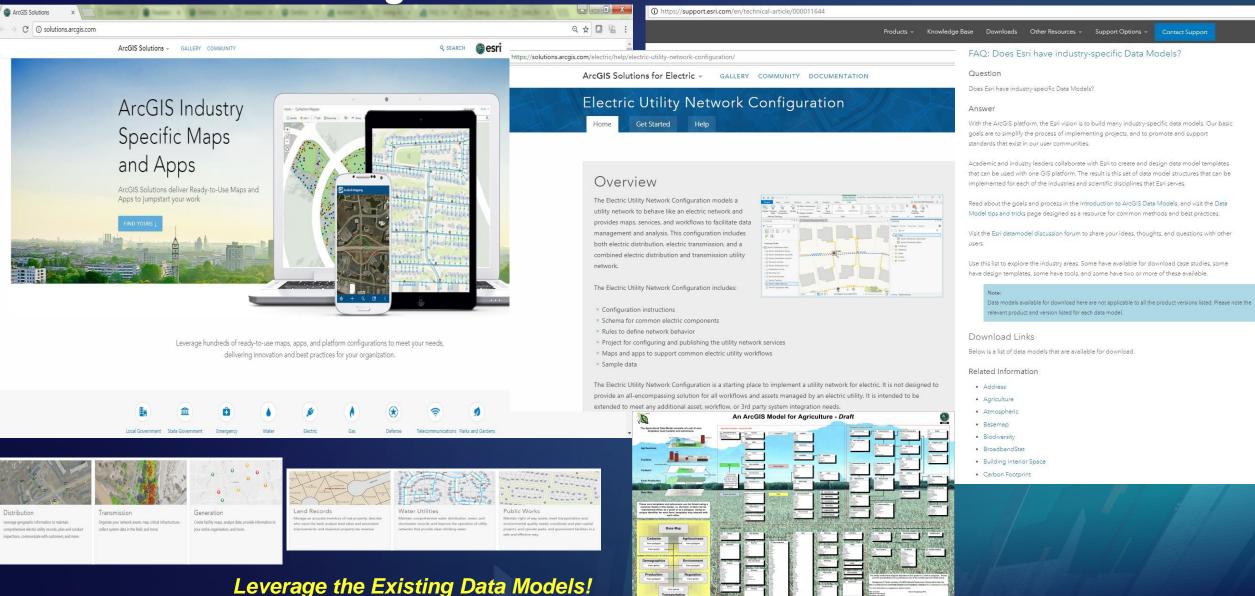
	X-Ray for Geodatabases
	X-Ray Edit View Tools Options Help
	Çx 🔯 🔚 x ²
	Geodatabase E:\ESR\Projects\UC_Presentations\UPDM\UPDM2016_Update\UPDM2016_Update\UPDM2016.gdb
	XML Workspace Document
	E:\ESRI\Projects\UC_Presentations\UPDM\UPDM2016_Update\UPDM2016_Update\UPDM2016 xml
	Enterprise Architect ArcGIS TM
	ArcCIS Coodatabaca Docigo with LIMI
	ArcGIS Geodatabase Design with UML
	Geodatabase design using open standards Enterprise Architect supports the design of geodatabases for the ArcGIS 10 platform developed by
	Esri Inc. ArcGIS is supported out-of-the-box for users of Enterprise Architect Professional edition and above!
	Key Tools:
	VUML profile for ArcGIS Vew ArcGIS diagram type and toolbox
	Model patterns and validation for ArcGIS Workspaces Quick Linker to help build valid ArcGIS schemas
	Generate ArcGIS 10 schemas in XML Reverse engineer legacy geodatabases in UML
	Watch our short tutorial and get started today!
y Scale	Decompose Each Define the Tabular
nd Spatial	Representation into Database Structure and
ntations	Geographic Datasets Behavior for Attributes
Design Ec	iting Propose a Define the Spatial
Workflo	ws Geodatabase Behavior, Relationships,
and Map D	isplay Design and Integrity Rules

11 Technical Steps!

Document the

Geodatabase

Design


Start

THE SCIENCE

WHERE

OF

Geodatabase Design – ArcGIS Data Models

Recommendations

Geodatabase Design – Key Considerations

Poor Design = Slow Performance and Bugs

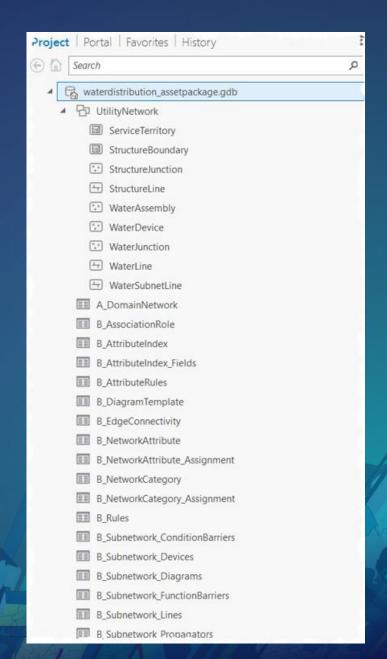
- Empty Feature Classes / Columns
- Missing / In-Correct Domains and Aliases for Fields
- Column / Domain Names and Field Lengths
 - >10 Characters in Field Names
 - Length of Text/NCLOB 256 or 1,073,741,822
 - Choice of Field Type
 - Selection of Precision and Scale
 - Define Not Null Fields

Alias	CustomerName	
Allow NULL values	Yes	
Default Value		
Domain		
Length	1073741822	

Geodatabase Design – Best Practices

Poor Design = Slow Performance and Bugs

- No Attributed Relationship Classes for Empty Tables!
- Use Many to Many Relationship Classes Only When Necessary
- Don't Use Objectid as Primary Key for Relationship Classes
 - Unexpected Replication Behavior
 - Additional Processing During Synchronization


General Rules			
Name:	ELECDIST.SwiFac_DynProtectDev		
Туре:	Simple		
Cardinality:	1 - M		
Notification:	None (no messages propagated)		
Origin Table/Fea	ature Class		
Nam	ELECTIS		
Primary Key:	OBJECTID		
Foreign Key:	StructureObjectID		
Destination Table	e/Feature Class		
Name:	ELECDIST.DynamicProtectiveDevice		
Primary Key:	OBJECTID		
	DeviceObjectID		
Foreign Key:	Benedebjourb		
1 A A	Concogous		
Foreign Key:	Dynamic Protective Device		
Foreign Key: Labels			

Geodatabase Design – Best Practices

Prevention is Better Than Cure!

- Leverage the Existing ArcGIS Data Models
 - Drop Redundant Feature Datasets / Classes, Columns, etc.
 - Stand Alone Feature Classes are Fine!
 - Possibly Split the Feature Classes Per Scale Levels
 - Less Complex and Attributed Relationship Classes
 - Test, Refine and Tune the Data Models
- Integrate Related Feature Classes using Topology
- Deploy Necessary Information Models
 - Geometric Network Vs Utility Network (New!)

Justify Every Single Geodatabase Element!

Geodatabase Design – Best Practices

Prevention is Better Than Cure!

- Select Single Coordinate System
 - On the Fly Projection is Expensive
 - Geometric Network Editing Does Not Support "On the Fly Projection"
- Create Feature Datasets or Databases for Each LOB (Line of Businesses)
 - Depends on Size, Access, Usage and Maintenance
 - E.g. Landbase, Gas, Electric, Water GDBs, etc.

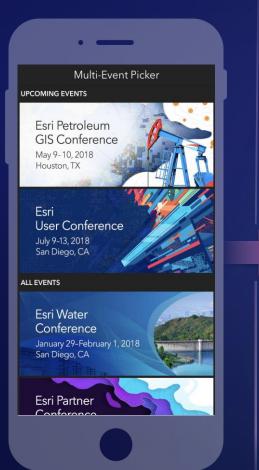
QA/QC - Recommendations

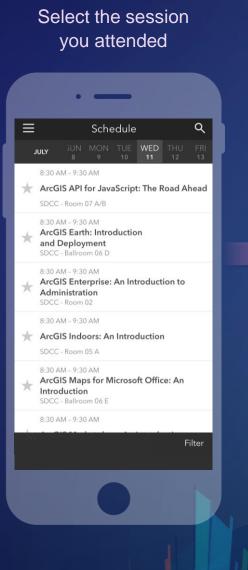
Data Integrity and Validation!

- Design and Implement QA / QC Workflows
 - Data Requirements for Software Functions
 - Accurate Data for Business
 - Maintain Data Integrity
- Tools
 - Domains, Subtypes, Topology, etc.
 - Attribute Assistant Add-In
 - ArcGIS Data Reviewer
 - ArcGIS Workflow Manager
 - Business Partner Products
 - Customization

Capture, Load and Maintain Data Accurately!

ArcGIS Data Reviewer Checks



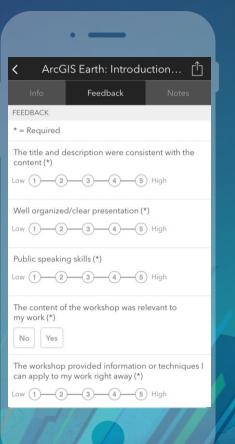

Questions and Answers

Contact Info: Rasu Muthurakku <u>rasu@esri.com</u>

Please Take Our Survey on the App

Download the Esri Events app and find your event

Scroll down to find the feedback section


DESCRIPTION

ArcGIS Earth has been built specifically to help more users in large enterprises access the value of their data in ArcGIS Enterprise and ArcGIS Online. This session will discuss the types of deployments that are being supported by ArcGIS Earth, how administrators can get users started quickly, and what types of enterprise data are accessible through Earth.

SPEAKERS

Chris Andrews

Complete answers and select "Submit"

See Us Here

WORKSHOP	LOCATION	TIME FRAME
 Esri Best Practices: Implementing an Enterprise Geodatabase 	• SDCC - Room 17 B	 Wednesday 7/11/2018 08:30 AM - 09:30 AM
 Esri Best Practices: Implementing an Enterprise Geodatabase 	• SDCC - Room 05 B	• Thursday 7/12/2018 10:00 AM - 11:00 AM

Thanks!

Design a Geodatabase