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ABSTRACT

Many image processing tasks exhibit a high degree of
data locality and parallelism and map quite readily to spe-
cialized massively parallel computing hardware. However,
as distributed memory machines are becoming a viable and
economical parallel computing resource, it is important to
understand how to use these environments for parallel im-
age processing as well. In this paper we discuss our imple-
mentation of a parallel image processing software library
(the Parallel Image Processing Toolkit). The library is eas-
ily extensible and hides the parallelism from the user. In-
side the Toolkit, a message-passing model of parallelism is
designed around the Message Passing Interface (MPI) stan-
dard. Experimental results are presented to demonstrate the
parallel speedup obtained with the Parallel Image Process-
ing Toolkit in a typical workstation cluster over a wide va-
riety of image processing tasks. We also discuss load bal-
ancing and the potential for parallelizing portions of image
processing tasks that seem to be inherently sequential, such
as visualization and data I/O.

I. INTRODUCTION

Because of the large data set size of high-resolution im-
age data (typical high-resolution images can be on the or-
der of 10,000�10,000 pixels), most desktop workstations
do not have sufficient computing power to perform image
processing tasks in a timely fashion. The processing power
of the typical desktop workstations can therefore become a
severe bottleneck in the process of viewing and enhancing
high resolution image data. Many image processing tasks
exhibit a high degree of data locality and parallelism and
map quite readily to specialized massively parallel comput-
ing hardware [1–7]. However, special-purpose machines
have not been cost-effective enough (in terms of the nec-
essary hardware and software investment) to gain wide-
spread use. Rather, it seems that the near-term future of
parallel computing will be dominated by medium-grain dis-
tributed memory machines in which each processing node
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work technologies continue to mature, clusters of worksta-
tions are themselves being increasingly viewed as a parallel
computing resource. The advantages of medium-grain par-
allel computing are low cost and high utility. The disadvan-
tages are relatively high communication costs and irregular
load patterns on the computing nodes.

In this paper, we describe the design and implementa-
tionof the Parallel Image Processing Toolkit (PIPT) library,
a scalable, extensible, and portable collection of image pro-
cessing routines. The PIPT uses a message passing model
based on the Message Passing Interface (MPI) standard and
is specifically designed to support parallel execution on het-
erogeneous workstation clusters and parallel machines.

The next section briefly describes cluster-based paral-
lelism, discussing mainly the data distribution and commu-
nication issues involved. Section III explains the design of
the PIPT, while Section IV provides an example of how a
typical image processing function is implemented. Parallel
performance results obtained from using the PIPT to per-
form some common image processing tasks are given in
Section V. For the tasks shown, the PIPT obtains a nearly
linear speedup as a function of the number of processors
used. Finally, Section VI contains our conclusions and sug-
gestions for future work.

II. PARALLEL IMAGE PROCESSING

The structure of the computational tasks in many low-
level and mid-level image processing routines readily sug-
gests a natural parallel programming approach.

A. Data Distribution

Many image processing algorithms exhibit natural par-
allelism in the following sense: the input image data re-
quired to compute a given portion of the output is spatially
localized. In the simplest case, an output image is computed
simply by independently processing single pixels of the in-
put image. More generally, a neighborhood (or window) of
pixels from the input image is used to compute an output
pixel, as shown in Figure 1. Since, the values of the out-
put pixels do not depend on each other, their values can be
computed independently and in parallel.

A fine-grained parallel decomposition of a window op-
erator based image processing algorithm would assign an
output pixel per processor and assign the necessary win-
dowed data required for each output pixel to the corre-
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Figure 1: Data dependency for an image processing algo-
rithm using a window operator.
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Figure 2: Fine-grained parallel decomposition for an image
processing algorithm using a window operator. The parallel
computation of two diagonally adjacent pixels is shown.

sponding processors. Each processor would perform the
necessary computations for their output pixels. An exam-
ple fine-grained decomposition of an image is shown in Fig-
ure 2. A coarse-grained decomposition (suitable for MIMD
or SPMD parallel environments) would assign large con-
tiguous regions of the output image to each of a small num-
ber of processors. Each processor would perform the appro-
priate window based operations to its own region of the im-
age. Appropriate overlapping regions of the image would
be assigned to properly accommodate the window opera-
tors at the image boundaries. An example coarse-grained
decomposition of an input image is shown in Figure 3.

B. Message Passing

One of the challenges in developing a parallel image
processing library is making it portable to the various (and
diverse) types of parallel hardware that are available (both
now and in the future). In order to make parallel code
portable, it is important to incorporate a model of paral-
lelism that is used by a large number of potential target
architectures. The most widely used and well understood
paradigm for the implementation of parallel programs on
distributed memory architectures is that of message pass-
ing. Several message passing libraries are available in
the public domain, including p4 [8], Parallel Virtual Ma-
chine (PVM) [9], PICL [10], and Zipcode [11]. Recently,

a core of library routines (influenced strongly by existing
libraries) has been standardized in the Message Passing In-
terface (MPI) [12,13]. Public domain implementations of
MPI are widely available for parallel hardware and clus-
ters of workstations, and most high-performance comput-
ing vendors have released native implementations of MPI
optimized for their hardware.

C. Goals

The following goals guided the design of the PIPT:

1. The PIPT must be portable to different computing envi-
ronments. The library must be able to be automatically
reconfigured for new environments.

2. The PIPT must be able to execute on homogeneous
or heterogeneous clusters of workstations using TCP/IP
communication.

3. The PIPT must be able to execute on dedicated parallel
hardware using vendor-supplied optimized communica-
tion libraries via MPI.

4. The PIPT must hide parallelism completely from users
of PIPT image processing routines. That is, users should
be able to call parallel image processing routines in a se-
rial fashion.

5. The PIPT should hide parallelism to the greatest ex-
tent possible from programmers wishing to add new im-
age processing routines or computational kernels to the
PIPT. The PIPT library should provide “wrapper” func-
tions to interface to the parallel transport mechanism.

6. The PIPT must be interoperable with other parallel li-
braries that may be used in an applicationusing the PIPT.
The PIPT must use a statically scoped message space so
that PIPT messages do not conflict with other messages
from other parallel library routines that may be used in
the same application with the PIPT.

III. DESIGN OVERVIEW

One method of parallelizing a library such as the PIPT is
to parallelize separately each routine contained in it. How-
ever, this approach exposes the details of parallelization
to anyone wishing to add routines to the PIPT — some-
thing that we deliberately want to avoid. Instead of mak-
ing each routine in the PIPT explicitly parallel, we exploit
the fact that a large number of the image processing routines
use a relatively small number of shared computational ker-
nels. In addition, since each kernel uses a similar method-
ology to implement their respective computational engines,
an opaque transport mechanism is used for nearly all mes-
sage passing and parallel aspects of the PIPT, making the
parallelism nearly invisible at the kernel level as well.



PPPPq-PPPPq����1����1
f()f()f()f()f()

----
-

����1����1-PPPPqPPPPq
Figure 3: Coarse-grained parallel decomposition for an image processing algorithm using a window operator.

The PIPT uses a manager/worker scheme in which a
manager process reads an image file from disk, partitions
it into equally sized slices, and sends the pieces to worker
processors. The worker processors invoke a specified im-
age processing routine to process their slices and then send
the processed slices back to the manager. The manager re-
assembles the processed slices to create a final processed
output image. Since the PIPT’s internal image format stores
rows of pixels contiguously in memory, slices are likewise
composed of rows of pixels from the original image.

A detailed diagram of the interaction between the vari-
ous components of the PIPT is shown in Figure 4. Appli-
cations use the PIPT by calling image processing routines
which are in turn built up from abstract computation ker-
nel functions. The kernel functions interface to an opaque
transport layer which transparently effects parallel execu-
tion. The transport mechanism makes calls to an MPI li-
brary for its parallel communication operations. Although
the PIPT provides for parallel execution of image process-
ing routines, parallelism is encapsulated at a low level of the
system so that users of the PIPT do not need to be concerned
with parallel programming. Additionally, MPI functions al-
low the PIPT to create its own message passing space that
is guaranteed not to conflict with any other messages from
the user’s application.

The user application must provide a raw image as well
as function parameters to the PIPT library function. The li-
brary function passes the raw image, parameters, and a lo-
cal processing function to a PIPT computational kernel. It
is this local processing function which will be applied by
the computational kernel on the worker nodes to actually
process the image. In the C programming language, a func-
tion can be specified in this way by specifying a pointer
to it. Unfortunately, in a distributed memory computing
environment, a function pointer is not a meaningful way
of specifying functions on remote compute nodes. Thus,
each compute node constructs a translation table and stores

the local memory addresses of necessary functions. Simi-
larly, translation tables are established for function param-
eters and local state variables. Global (across all compute
nodes) indices are then established for each function, func-
tion parameter, and variable that is necessary for the rou-
tine. Therefore, functions, parameters, and variables can be
specified remotely merely by sending the appropriate index
as a message.

IV. ANALYSIS

There are some subtleties in the PIPT implementation
which are best illustrated by way of example. Figure 5
shows a listing of the code necessary to implement a par-
allel average filter that is included in the PIPT library.

A. Necessary Functions for Parallel Image Pro-
cessing Routines

There are only three functions that are required to im-
plement the average filter:� PIPAverage(): PIPT entry library function for per-

forming average filtering of an image.� PIPAverage Register(): Function for register-
ing the average filter routine and routine-specific param-
eters that need to be communicated to the workers by the
manager (see below).� WindowOperator(): Local function for computing
each output pixel — it is called once for each output pixel
by PIPT Process window() (see below).

PIPAverage() is the entry function that is invoked
by the user program executing on the manager node.
The computational kernel used by PIPAverage() is
PIPT Process window(). However, kernels are never
directly invoked. Instead, they are called through the in-
direction function PIPT Kernel() (see Figure 5) for
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Figure 4: Detailed diagram of the interaction between the
various components of the PIPT. Processing starts with
the block labeled “Application.” Components located on
worker processors are shown in grey.

internal setup and bookkeeping reasons. Likewise, pa-
rameters are not passed directly to PIPT Process -
window() in the conventional sense; pointers to the ker-
nel specific parameters must be passed through PIPT -
Kernel param(). PIPT Process window() re-
quires three such kernel specific parameters: WinHeight,
WinWidth, and InputImage. For convenience, user
routines can call a wrapper function to the kernel which
makes the calls to PIPT Kernel param() automat-
ically. The wrapper function for PIPT Process -
window() is ProcessWindow(). Using these two
wrapper functions, the body of PIPAverage() is re-
duced to two lines of code.

PIPT Process window() returns the processed
output image to ProcessWindow(), which returns it to
PIPAverage(), which returns it to the calling function.

B. Registration

To manage the communication of function pointers and
parameters, the PIPT uses a registration process that gen-

#include "pipt.h"
static int WindowSize;

void PIPAverage_Register()
{

PIPT_Register_routine(PIPAverage,
WindowOperator, PIPT_Process_window);

PIPT_Register_parameter(PIPAverage, PIPT_INT,
PIPT_BROADCAST, &WindowSize);

}

IMAGE *PIPAverage(IMAGE *InputImage, int
WinHeight, int WinWidth)

{
int Overlap = WinHeight / 2;
IMAGE *ret;

WindowSize = WinHeight * WinWidth;
PIPT_Kernel_start(PIPT_Process_window);
PIPT_Kernel_Param(&WinHeight);
PIPT_Kernel_Param(&WinWidth);
PIPT_Kernel_Param(&InputImage, &Overlap);
ret = PIPT_Kernel(WindowOperator);
PIPT_Kernel_end();

return ret;
}

static PIXEL WindowOperator(IMAGE *InputWindow)
{

int i, Val = 0;
PIXEL *Pixels = InputWindow->data[0][0];
for (i = 0; i < WindowSize; i++)

Val += Pixels[i];
return (PIXEL) (Val / WindowSize);

}

Figure 5: Complete code listing for the PIPT implementa-
tion of a parallel average filter.

erates a unique identifier for each routine that is regis-
tered. It also associates the parameters of the routine with
the unique identifier so that the parameter values can be
broadcast to the workers. The function PIPAverage -
register() registers the average filter routine, its win-
dow operator function WindowOperator(), and its as-
sociated parameter, WindowSize. The PIPT library call
PIPT Register routine() creates an entry in the
PIPT’s internal Routine Table for the average filter. It
saves a function pointer to the entry point of the function,
a pointer to its window operator function, and a pointer to
the computational kernel that it will call. After the pointers
have been stored in a new entry in the Routine Table, the
internal index for that entry serves as the unique identifier
for the registered function.

The PIPT Register parameter() library call
adds a pointer to a list of parameters that is associated with
a particular entry in the Routine Table. Its arguments are
a pointer to the entry point of the associated function, the
data type of the parameter, what communication pattern
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Figure 6: Execution times (in wall-clock seconds) for a par-
allel square median filter on (from top to bottom) a cluster
of Sparc 5’s, an IBM SP-2, and an SGI PowerChallenge.

should be used with this parameter (broadcast, scatter,
gather, or reduce), and a pointer to the parameter itself.

V. EXPERIMENTAL RESULTS

In this section we present experimental results using the
PIPT to perform some common image processing tasks. In
order to check the correctness of the parallel implementa-
tion, a large number of images were processed in parallel
and compared to images processed with the same param-
eters using a sequential version of the PIPT. In all cases,
the output images produced by the parallel routines exactly
matched the output images produced by the serial routines.

The input image used for the parallel image processing
experiments discussed below was the 1455 � 1540 TIFF
image file previously shown in Figure 3. The experiments
were conducted on a network of Sun SPARCStation 5 work-
stations connected with standard (10 Mbit/s) Ethernet, an
IBM SP-2, and an SGI PowerChallenge. The mpich and
LAM implementations of MPI (from Argonne National Labs
and Mississippi State University, and Ohio Supercomputing
Center, respectively) were used [14,15] for the LAN-based
experiements.

A. Parallel Performance

Figure 6 shows a plot of execution time (in wall-clock
seconds) as a function of the number of processors used
for a parallel square median filter on three different types
of parallel architectures. Each run used a window size of17� 17 pixels.

To quantify parallel performance, we define parallel
speedup as:

speedup = TparTseq

where Tpar and Tseq are measured parallel and sequen-
tial wall-clock execution times, respectively. The observed
speedup for the parallel square median filter scaled nearly
linearly with the number of processors, achieving a speedup
of a factor of close to 8.0 on eight processors on all archi-
tectures.

B. Load Balancing

A simple dynamic load balancing algorithm has been
incorporated into the PIPT. Instead of dividing up the in-
put image such that each worker has only one image slice
to process, the dynamic load balancing algorithm divides
the image into many small slices and puts them into a pool.
Each worker is given a slice to process from the pool on a
first-come, first-serve basis. Faster (or less loaded) work-
stations will automatically receive more work than slower
(or more loaded) workstations. This approach attempts to
keep all workers busy until the whole image has been pro-
cessed, but not necessarily with the same amount of work.
However, there is a tradeoff between granularity and com-
munication overhead. Ideally, the slices can be arbitrarily
small so that each processor, no matter how loaded, will
never have to spend a significant amount of time process-
ing it. Unfortunately, the communication cost for sending a
large number of small packets over a LAN quickly becomes
too expensive as the slice size is decreased.

VI. CONCLUSIONS

The PIPT demonstrated a significant speedup in pro-
cessing large images compared to sequential functions. For
the examples shown in this paper, the PIPT obtained a
nearly linear speedup as a function of the number of work-
stations used. The PIPT’s simple interface allows users
to easily develop new parallel image processing routines.
Since the parallel aspects of the PIPT are contained in a low
level opaque transport mechanism of the library, the user
can design and implement image processing algorithms and
kernels without having to consider the complexities of par-
allel programming.

Clusters of workstations are already widely available,
so the cluster-based approach will continue to be an effec-
tive, practical, and economical mode of distributedmemory
parallel computing. As more vendors introduce native im-
plementations of MPI (tuned for their particular platforms),
software that is based on MPI (such as the PIPT) will imme-
diately be able to take advantage of the increased efficiency.

A. Further Extensions to PIPT

There are still several operations in the PIPT which con-
tribute significantly to the overall processing time. Disk I/O
is inherently sequential, as are scattering and gathering the
image data between the manager and workers. Intelligent



algorithms can be devised to take advantage of distributed
I/O mechanisms.

Image visualization also presents an interesting oppor-
tunity for parallelization. Presently, the manager gathers the
processed image from the workers and then post-processes
it in order to render it on the display device. By distribut-
ing visualization routines in the same manner as the pro-
cessing routines, the PIPT can gain added overall parallel
efficiency [17].

Data caching can also improve performance. If a node
caches the last several image slices that it processed, it is
possible to apply a new image processing algorithm to these
slices without having to re-send them across the network.

Much of the development effort in this version of the
PIPT focused on proper encapsulation of the data structures
and in providing a consistent programming interface to the
library. A natural extension of this effort would be to imple-
ment the PIPT in a true object-oriented fashion using C++.

Many high-end workstations contain multiple proces-
sors that operate in a symmetric multiprocessor mode.
Many of the issues and design decisions made for the PIPT
will be different in a symmetric multiprocessing environ-
ment. Thus, it is particularly appropriate to study an imple-
mentation of PIPT that is aimed particularly at symmetric
multiprocessing workstations, and/or to a networked clus-
ter of such machines.

For image exploitation, it is often economical to main-
tain a central database of imagery data that are served to
image processing clients. There are several emerging tech-
nologies that provide Gbit/s data transfer rates — ATM be-
ing the premiere among these. A study of Gbit/s network
technology for image exploitation is a natural follow on to
the PIPT.

B. Availability

A public domain implementation of the PIPT can be ob-
tained via the World Wide Web at URL

http://www.cse.nd.edu/�lsc/research/PIPT/
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