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ABSTRACT

Many image processing tasks exhibit a high degree of
data locality and parallelism and map quite readily to spe-
cialized massively paralel computing hardware. However,
as distributed memory machines are becoming aviable and
economical parallel computing resource, it is important to
understand how to use these environments for parallel im-
age processing as well. In this paper we discuss our imple-
mentation of a parallel image processing software library
(the Parallel Image Processing Toolkit). Thelibrary is eas-
ily extensible and hides the parallelism from the user. In-
side the Toolkit, a message-passing model of paralelismis
designed around the M essage Passing Interface (MPI) stan-
dard. Experimental resultsare presented to demonstratethe
parallel speedup obtained with the Paralel Image Process-
ing Toolkit in atypica workstation cluster over awide va
riety of image processing tasks. We also discuss load bal-
ancing and the potential for parallelizing portions of image
processing tasks that seem to be inherently sequential, such
as visuaization and datal/O.

. INTRODUCTION

Because of thelarge data set size of high-resolutionim-
age data (typica high-resolution images can be on the or-
der of 10,000x 10,000 pixels), most desktop workstations
do not have sufficient computing power to perform image
processing tasksin atimely fashion. The processing power
of the typical desktop workstations can therefore become a
severe bottleneck in the process of viewing and enhancing
high resolution image data. Many image processing tasks
exhibit a high degree of data locality and parallelism and
map quitereadily to specialized massively parallel comput-
ing hardware [1-7]. However, specia-purpose machines
have not been cost-effective enough (in terms of the nec-
essary hardware and software investment) to gain wide-
spread use. Rather, it seems that the near-term future of
parallel computing will be dominated by medium-grain dis-
tributed memory machines in which each processing node
hasthe capabilitiesof adesktopworkstation. Indeed, asnet-
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work technol ogies continue to mature, clusters of worksta
tionsare themselvesbeing increasingly viewed asaparalel
computing resource. The advantages of medium-grain par-
allel computing are low cost and high utility. The disadvan-
tages are relatively high communication costs and irregular
load patterns on the computing nodes.

In this paper, we describe the design and implementa-
tionof the Parallel Image Processing Toolkit (PIPT) library,
ascalable, extensible, and portabl e collection of image pro-
cessing routines. The PIPT uses a message passing model
based on the M essage Passing I nterface (MPI) standard and
isspecifically designed to support parallel execution on het-
erogeneous workstation clusters and parallel machines.

The next section briefly describes cluster-based paral-
[elism, discussing mainly the data distributionand commu-
nication issues involved. Section |11 explains the design of
the PIPT, while Section 1V provides an example of how a
typical image processing functionisimplemented. Parallel
performance results obtained from using the PIPT to per-
form some common image processing tasks are given in
Section V. For the tasks shown, the PIPT obtains a nearly
linear speedup as a function of the number of processors
used. Finally, Section VI contains our conclusionsand sug-
gestionsfor future work.

I[I. PARALLEL IMAGE PROCESSING

The structure of the computational tasks in many low-
level and mid-level image processing routines readily sug-
gestsa natural parallel programming approach.

A. DataDistribution

Many image processing algorithms exhibit natural par-
alelism in the following sense:  the input image data re-
quired to compute a given portion of the output is spatially
localized. Inthesimplest case, an outputimageiscomputed
simply by independently processing single pixels of thein-
put image. More generally, a neighborhood (or window) of
pixels from the input image is used to compute an output
pixel, as shown in Figure 1. Since, the values of the out-
put pixels do not depend on each other, their values can be
computed independently and in paralldl.

A fine-grained parallel decomposition of a window op-
erator based image processing agorithm would assign an
output pixel per processor and assign the necessary win-
dowed data required for each output pixel to the corre-
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Figure 1: Data dependency for an image processing ago-
rithm using a window operator.
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Figure2: Fine-grained parallel decompositionfor animage
processing algorithm using awindow operator. The parallel
computation of two diagonally adjacent pixelsis shown.

sponding processors. Each processor would perform the
necessary computations for their output pixels. An exam-
plefine-grained decomposition of animageisshowninFig-
ure2. A coarse-grained decomposition (suitablefor MIMD
or SPMD parald environments) would assign large con-
tiguousregions of the output image to each of asmall num-
ber of processors. Each processor would performthe appro-
priate window based operationsto itsown region of theim-
age. Appropriate overlapping regions of the image would
be assigned to properly accommodate the window opera-
tors at the image boundaries. An example coarse-grained
decomposition of an input image is shown in Figure 3.

B. Message Passing

One of the chalenges in developing a parale image
processing library is making it portable to the various (and
diverse) types of parallel hardware that are available (both
now and in the future). In order to make parald code
portable, it is important to incorporate a model of paral-
lelism that is used by a large number of potential target
architectures. The most widely used and well understood
paradigm for the implementation of parallel programs on
distributed memory architectures is that of message pass-
ing. Several message passing libraries are available in
the public domain, including p4 [8], Parald Virtua Ma
chine (PVM) [9], PICL [10], and Zipcode [11]. Recently,

a core of library routines (influenced strongly by existing
libraries) has been standardized in the Message Passing In-
terface (MPI) [12,13]. Public domain implementations of
MPI are widely available for parallel hardware and clus-
ters of workstations, and most high-performance comput-
ing vendors have released native implementations of MPI
optimized for their hardware.

C. Goals
The following goas guided the design of the PIPT:

1. The PIPT must be portableto different computing envi-
ronments. The library must be able to be automatically
reconfigured for new environments.

2. The PIPT must be able to execute on homogeneous
or heterogeneous clusters of workstationsusing TCP/IP
communication.

3. The PIPT must be able to execute on dedicated parallel
hardware using vendor-supplied optimized communica-
tion librariesviaMPI.

4. The PIPT must hide parallelism completely from users
of PIPT image processing routines. That is, users should
be ableto call parallel image processing routinesin ase-
rial fashion.

5. The PIPT should hide parallelism to the greatest ex-
tent possiblefrom programmers wishing to add new im-
age processing routines or computational kernels to the
PIPT. The PIPT library should provide “wrapper” func-
tionsto interface to the parallel transport mechanism.

6. The PIPT must be interoperable with other paralld li-
brariesthat may be usedin an applicationusing the PI PT.
The PIPT must use a statically scoped message space so
that PIPT messages do not conflict with other messages
from other paralle library routines that may be used in
the same application with the PIPT.

[11. DESIGN OVERVIEW

Onemethod of paralldizingalibrary such asthe PIPT is
to parallelize separately each routine contained in it. How-
ever, this approach exposes the details of paralldization
to anyone wishing to add routines to the PIPT — some-
thing that we deliberately want to avoid. Instead of mak-
ing each routinein the PIPT explicitly parald, we exploit
thefact that alarge number of theimage processing routines
use ardatively small number of shared computational ker-
nels. In addition, since each kernel uses a similar method-
ol ogy to implement their respective computational engines,
an opague transport mechanism is used for nearly all mes-
sage passing and paralld aspects of the PIPT, making the
parallelism nearly invisible at the kernel level aswell.



Figure 3: Coarse-grained parallel decomposition for an image processing a gorithm using a window operator.

The PIPT uses a manager/worker scheme in which a
manager process reads an image file from disk, partitions
it into equally sized dices, and sends the pieces to worker
processors. The worker processors invoke a specified im-
age processing routineto process their dlices and then send
the processed dlices back to the manager. The manager re-
assembles the processed dlices to create a fina processed
outputimage. SincethePIPT’sinternal imageformat stores
rows of pixels contiguously in memory, dices are likewise
composed of rows of pixelsfrom the origina image.

A detailed diagram of the interaction between the vari-
ous components of the PIPT is shown in Figure 4. Appli-
cations use the PIPT by calling image processing routines
which are in turn built up from abstract computation ker-
nel functions. The kernel functionsinterface to an opague
transport layer which transparently effects parallel execu-
tion. The transport mechanism makes calls to an MPI li-
brary for its parallel communication operations. Although
the PIPT providesfor paralel execution of image process-
ing routines, parallelismisencapsul ated at alow leve of the
system so that usersof the PIPT do not need to be concerned
with paralel programming. Additionally, MPI functionsal-
low the PIPT to create its own message passing space that
is guaranteed not to conflict with any other messages from
the user’s application.

The user application must provide araw image as well
as function parameters to the PIPT library function. Theli-
brary function passes the raw image, parameters, and alo-
cal processing function to a PIPT computational kernel. It
isthislocal processing function which will be applied by
the computationa kernel on the worker nodes to actually
processtheimage. In the C programming language, afunc-
tion can be specified in this way by specifying a pointer
to it. Unfortunately, in a distributed memory computing
environment, a function pointer is not a meaningful way
of specifying functions on remote compute nodes. Thus,
each compute node constructs a trand ation table and stores

the local memory addresses of necessary functions. Simi-
larly, trand ation tables are established for function param-
eters and locd state variables. Global (across al compute
nodes) indices are then established for each function, func-
tion parameter, and variable that is necessary for the rou-
tine. Therefore, functions, parameters, and variablescan be
specified remotely merely by sending the appropriateindex
as amessage.

IV. ANALYSIS

There are some subtleties in the PIPT implementation
which are best illustrated by way of example. Figure 5
shows a listing of the code necessary to implement a par-
allel average filter that isincluded in the PIPT library.

A. Necessary Functionsfor Parallel ImagePro-
cessing Routines

There are only three functions that are required to im-
plement the average filter:

e Pl PAver age(): PIPT entry library function for per-
forming average filtering of an image.

e Pl PAver age_Regi st er () : Function for register-
ing the average filter routineand routine-specific param-
etersthat need to be communicated to theworkers by the
manager (see below).

e W ndowQper at or () : Loca function for computing
each output pixel —itiscalled oncefor each output pixel
by Pl PT_Process wi ndow() (seebeow).

Pl PAver age() istheentry function that is invoked
by the user program executing on the manager node.
The computational kernel used by Pl PAver age() is
Pl PT_Pr ocess_w ndow( ) . However, kernelsare never
directly invoked. Instead, they are called through the in-
direction function Pl PT_Ker nel () (see Figure 5) for
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Figure 4: Detailed diagram of the interaction between the
various components of the PIPT. Processing starts with
the block labeled “Application.” Components located on
worker processors are shown in grey.

interna setup and bookkeeping reasons. Likewise, pa
rameters are not passed directly to Pl PT_Pr ocess -
wi ndow() in the conventional sense; pointersto the ker-
nel specific parameters must be passed through Pl PT_-
Kernel paranm(). PIPT_Process.wi ndow) re
quiresthree such kernel specific parameters: W nHei ght ,
W nW dt h, and | nput | mage. For convenience, user
routines can call a wrapper function to the kernel which
makes the calls to Pl PT_Ker nel param() automat-
icaly. The wrapper function for Pl PT_Process._-
wi ndow() is ProcessW ndow(). Usng these two
wrapper functions, the body of Pl PAver age() is re-
duced to two lines of code.

Pl PT_Pr ocess wi ndow() returns the processed
output image to Pr ocessW ndow( ) , which returnsit to
Pl PAver age() , which returnsit to the caling function.

B. Registration

To manage the communication of function pointersand
parameters, the PIPT uses a registration process that gen-

#i ncl ude "pipt.h"
static int WndowsSi ze;

voi d Pl PAver age_Regi ster ()

Pl PT_Regi st er _routi ne( Pl PAver age,
W ndowOper at or, Pl PT_Process_wi ndow) ;
Pl PT_Regi st er _par anet er (Pl PAver age, PI PT_I NT,
Pl PT_BRQOADCAST, &W ndowSi ze);
}

| MAGE *PI PAver age(| MAGE *I nput | mage, int
W nHei ght, int WnWdth)

{
int Overlap = WnHeight / 2;
I MAGE *ret;

W ndowSi ze = W nHei ght * W nW dt h;

Pl PT_Kernel _start (Pl PT_Process_wi ndow) ;
Pl PT_Ker nel _Par am( &W nHei ght ) ;

Pl PT_Ker nel _Par am( &N nW dt h) ;

Pl PT_Ker nel _Par an( & nput | nage, &Overl ap);
ret = Pl PT_Kernel (W ndowOperator);

Pl PT_Kernel _end();

return ret;

}

static PI XEL W ndowOper at or (| MAGE *| nput W ndow)
{
int i, Val = 0;
Pl XEL *Pi xel s = | nput Wndow >dat a[ 0] [ 0] ;
for (i = 0; i < WndowsSi ze; i ++)
Val += Pixels[i];
return (PI XEL) (Val / W ndowSi ze);

Figure5: Complete code listing for the PIPT implementa-
tion of a parallel average filter.

erates a unique identifier for each routine that is regis-
tered. It also associates the parameters of the routine with
the unique identifier so that the parameter values can be
broadcast to the workers. The function Pl PAver age -

regi st er () registersthe average filter routine, itswin-
dow operator function W ndowQper at or () , and itsas-
sociated parameter, W ndowSi ze. The PIPT library call
Pl PT_Regi st er routi ne() creates an entry in the
PIPT’s internal Routine Table for the average filter. It
saves afunction pointer to the entry point of the function,
a pointer to its window operator function, and a pointer to
the computational kernel that it will call. After the pointers
have been stored in a new entry in the Routine Table, the
internal index for that entry serves as the unique identifier
for the registered function.

The Pl PT_Regi st er _paraneter () library cal
adds a pointer to alist of parameters that is associated with
a particular entry in the Routine Table. Its arguments are
a pointer to the entry point of the associated function, the
data type of the parameter, what communication pattern
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Figure6: Executiontimes (inwall-clock seconds) for apar-
allel sgquare median filter on (from top to bottom) a cluster
of Sparc 5's, an IBM SP-2, and an SGI PowerChallenge.

should be used with this parameter (broadcast, scatter,
gather, or reduce), and a pointer to the parameter itself.

V. EXPERIMENTAL RESULTS

In this section we present experimenta resultsusing the
PIPT to perform some common image processing tasks. In
order to check the correctness of the parallel implementa
tion, alarge number of images were processed in paralle
and compared to images processed with the same param-
eters using a sequential version of the PIPT. In al cases,
the output images produced by the parallel routines exactly
matched the output images produced by the serial routines.

The input image used for the parallel image processing
experiments discussed below was the 1455 x 1540 TIFF
image file previously shown in Figure 3. The experiments
were conducted on anetwork of Sun SPARCStation 5 work-
stations connected with standard (10 Mbit/s) Ethernet, an
IBM SP-2, and an SGI PowerChallenge. The npi ch and
L AMimplementationsof MPI (from ArgonneNational Labs
and Mississippi State University, and Ohio Supercomputing
Center, respectively) were used [14,15] for the LAN-based
experiements.

A. Paralld Performance

Figure 6 shows a plot of execution time (in wall-clock
seconds) as a function of the number of processors used
for a parallel square median filter on three different types
of parale architectures. Each run used a window size of
17 x 17 pixéls.

To quantify parale performance, we define parallel
speedup as:

Tpar

speedup = @

where Tpar and Tseq are measured parallel and sequen-
tial wall-clock execution times, respectively. The observed
speedup for the parallel square median filter scaled nearly
linearly with thenumber of processors, achieving aspeedup
of afactor of close to 8.0 on eight processors on all archi-
tectures.

B. Load Balancing

A simple dynamic load balancing algorithm has been
incorporated into the PIPT. Instead of dividing up the in-
put image such that each worker has only one image dlice
to process, the dynamic load balancing agorithm divides
theimage into many small slices and putsthem into a pool.
Each worker is given a slice to process from the pool on a
first-come, first-serve basis. Faster (or less loaded) work-
stationswill automatically receive more work than slower
(or more loaded) workstations. This approach attempts to
keep al workers busy until the whole image has been pro-
cessed, but not necessarily with the same amount of work.
However, thereis a tradeoff between granularity and com-
munication overhead. Idedly, the dlices can be arbitrarily
small so that each processor, no matter how loaded, will
never have to spend a significant amount of time process-
ingit. Unfortunately, the communication cost for sending a
largenumber of small packetsover aL AN quickly becomes
too expensive asthe dice size is decreased.

VI. CONCLUSIONS

The PIPT demonstrated a significant speedup in pro-
cessing large images compared to sequentia functions. For
the examples shown in this paper, the PIPT obtained a
nearly linear speedup as a function of the number of work-
dtations used. The PIPT’s simple interface allows users
to easily develop new parallel image processing routines.
Sincetheparallel aspects of the PIPT are containedinalow
level opague transport mechanism of the library, the user
can design and i mplement image processing algorithmsand
kernelswithout having to consider the complexities of par-
allel programming.

Clusters of workstations are aready widely available,
so the cluster-based approach will continue to be an effec-
tive, practical, and economical mode of distributed memory
parallel computing. As more vendors introduce native im-
plementationsof MPI (tuned for their particular platforms),
softwarethat isbased on MPI (such asthe PIPT) will imme-
diately be abletotake advantage of theincreased efficiency.

A. Further Extensionsto PIPT

Therearedtill severa operationsinthe PIPT which con-
tributesignificantly totheoverall processingtime. Disk I/O
isinherently sequential, as are scattering and gathering the
image data between the manager and workers. Intelligent



algorithms can be devised to take advantage of distributed
[/O mechanisms.

Image visualization also presents an interesting oppor-
tunity for parallelization. Presently, themanager gathersthe
processed image from the workers and then post-processes
it in order to render it on the display device. By distribut-
ing visualization routines in the same manner as the pro-
cessing routines, the PIPT can gain added overall parallel
efficiency [17].

Data caching can also improve performance. If a node
caches the last several image dices that it processed, it is
possibleto apply anew image processing algorithmtothese
dlices without having to re-send them across the network.

Much of the development effort in this version of the
PIPT focused on proper encapsul ation of the data structures
and in providing a consistent programming interface to the
library. A natural extension of thiseffort would betoimple-
ment the PIPT in atrue object-oriented fashion using C++.

Many high-end workstations contain multiple proces-
sors that operate in a symmetric multiprocessor mode.
Many of the issues and design decisions made for the PIPT
will be different in a symmetric multiprocessing environ-
ment. Thus, it is particularly appropriateto study animple-
mentation of PIPT that is aimed particularly at symmetric
multi processing workstations, and/or to a networked clus-
ter of such machines.

For image exploitation, it is often economical to main-
tain a central database of imagery data that are served to
image processing clients. There are several emerging tech-
nologiesthat provide Ghit/sdatatransfer rates— ATM be-
ing the premiere among these. A study of Gbit/s network
technology for image exploitationis a natural follow onto
the PIPT.

B. Availability

A publicdomain implementation of the PIPT can be ob-
tained via the World Wide Web at URL

http://ww. cse. nd. edu/
~| sc/ research/ Pl PT/
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