
42 ArcUser Winter 2010 www.esri.com

101Versioning

Figure 1: At a conceptual level, ArcSDE geodatabases have a multi-
tier architecture that implements advanced logic and behavior in
an application tier on top of a data storage tier. The application
tier consists of ArcObjects and ArcSDE technology, while the data
storage tier is comprised of database management system (DBMS)
software. ArcSDE geodatabases utilize the simple, formal data model
of a DBMS for storing and managing information in tables. They
also leverage DBMS support for multiuser transaction processing.

Essential information
about ArcSDE
geodatabases

Editor’s note: Rather than a comprehensive

discussion of versioning, this article presents

the key concepts about ArcSDE geodatabase

versioning including version creation; version

workflows; reconciliation and post; states; and

compress operations. By Derek Law, ESRI Product Management

What Is Versioning?
Versioning is the mechanism that enables concurrent
multiuser geodatabase editing in ArcSDE geodatabases.
It uses an optimistic concurrency data-locking model,
which means no locks are applied to affected features
and rows during long transactions. It is the default editing
environment in enterprise ArcSDE geodatabases and
supports complex editing workflows that are required by
enterprise GIS systems.
 Versioning records and manages states of individual
features and rows as they are edited while preserving
integrity in the database. It is the basis for multiple users
accessing and editing data simultaneously in enterprise
ArcSDE geodatabases. Conceptually, a version of the
geodatabase represents an alternative, independent,

persistent view of the geodatabase. It supports multiple
concurrent editors and does not involve creating a copy
of the data. A version references a specific state of the
geodatabase. It contains all the datasets in the geodatabase
and evolves over time. Users access data in an enterprise
ArcSDE geodatabase through a version. Behind the scenes,
simple queries in the underlying DBMS are used to view and
work with the referenced state for a particular point in time
or to see an individual user’s current edits.

Note: Database transactions represent a package of work that makes
changes to databases. Most database transactions occur within a very
short time period, often within seconds. A state is a unit of change (i.e.,
an edit) that is performed on data in the geodatabase. It represents a

discrete snapshot of the database whenever a change is made.

Application Tier

Data Storage Tier

Geodatabase

RDBMS

ArcObjects

ArcSDE Technology

www.esri.com ArcUser Winter 2010 43

Special

Versioning

Continued on page 44

A (adds) and D (deletes) tables. Each table or feature class will have an
associated pair of these delta tables when they are registered as versioned
within ArcCatalog.
 Every version has an owner, description, parent version, associated
database state, and level of user access. There are three levels of access
to a version:
 Private: Only the owner can view and edit.
 Protected: All users can view, but only the owner can edit.
 Public: All users can view and edit.
 The access level for the DEFAULT version is public by default. It
is recommended that its access level be set to protected to ensure data
in an enterprise ArcSDE geodatabase is not accidentally corrupted or
lost. This means that only the ArcSDE administrator can edit or post
changes to the DEFAULT version.
 Versions are beneficial for workflow management in enterprise
ArcSDE geodatabases, such as modeling different discrete stages
in a GIS project (e.g., each stage is represented by a version) and
modeling what-if scenarios without affecting the original datasets.
They provide a framework for security management and quality assur-
ance in data editing, and they also support historical archiving and
geodatabase replication.

Versioning Workflows
Versioning supports many complex editing workflows and can be eas-
ily adapted and/or customized to meet the business requirements of any
organization. Three example business workflows using versions are
shown in Figure 3. The simplest workflow is to have concurrent editors
directly editing the DEFAULT version (see Figure 3A). Another option
is to create a separate version (e.g., multiple projects) for each editor in
the geodatabase (see Figure 3B). To ensure that the publication view
of the geodatabase is protected from accidental data corruption, many
organizations create a quality assurance (QA) version from the DE-
FAULT version (see Figure 3C). The QA version would be maintained
by a data quality manager and would regulate all edits that are applied
back to DEFAULT. Note that each versioning workflow strategy has its
own advantages and disadvantages. It is important to use a strategy that
best meets the requirements of the business workflow.

 Enterprise ArcSDE geodatabases provide support for many users
creating and maintaining large amounts of GIS data in a central loca-
tion. In many cases, multiple users need to edit the same data at the
same time. In other words, they require concurrent multiuser geoda-
tabase editing. The nature of the spatial relationships and connectivity
that define geographic data requires that edit sessions for geospatial
data typically span long periods of time (e.g., hours, days, or weeks).
These long edit sessions can be thought of as long transactions in the
DBMS. Additional user requirements include the ability to undo or redo
changes, the capability to develop alternative application design pro-
posals without affecting the published geodatabase, and a mechanism
to manage how the data and the geodatabase have changed over time.

The DEFAULT Version
Every enterprise ArcSDE geodatabase has a default version named
DEFAULT that is owned by the ArcSDE administrator. The DEFAULT
version always exists and cannot be deleted or renamed. It is the root
version and, therefore, the ancestor to all other versions in the geo-
database. In many workflow strategies, it is the published version of
the geodatabase, representing the current “public” end-user view of the
geodatabase. The DEFAULT version is typically maintained and up-
dated over time by incorporating changes to it from other versions. Like
any other version, it can also be directly edited.
 Enterprise ArcSDE geodatabases can have many versions. A new
version (child version) is created from an existing version (parent ver-
sion). When a new child version is first created, it is identical to its
parent. However, over time, parent and child versions may diverge
as changes are made to each version. In the figures in this article,
Project 1 is a child version of DEFAULT, its parent version (Figure 2).
 When editing geodatabase datasets within the versioned edit-
ing environment, each version will seem to have its own copy of the
data. As a dataset is edited in one version, it will appear differently
when viewed in another version. Regardless of how many versions
exist within the geodatabase, each dataset is only stored once in the
DBMS. Behind the scenes, ArcGIS leaves each dataset in its original
state during editing. All changes to a dataset are recorded in associated
tables known as delta tables. Delta tables are also commonly called the

Figure 2: Versioning allows multiple
users to work on the same geodatabase.

DEFAULT is the parent version and
Project 1 and Project 2 are child

versions.

DEFAULT

Project 1 Project 2

Editor 1 Editor 2

Versioning

44 ArcUser Winter 2010 www.esri.com

Versioning 101
Continued from page 43

Database States and Versions
A version references a specific database state—a unit of change that
occurs in the database. Every edit operation performed in the geoda-
tabase creates a new database state. An edit operation is any task or
set of tasks (e.g., additions, deletions, or modifications) undertaken on
features and rows. State ID values apply to any and all changes made
in the geodatabase.
 Initially, the DEFAULT version points to state 0. As edits are made to
datasets in the geodatabase, the state ID will increase incrementally. In
general, the state ID increases by a value of one for each edit operation.
However, there are some exceptions where state ID may increase by a
value greater than one, such as during a reconcile operation.

 Figure 4 illustrates the state ID increasing as edits are made to
two feature classes in the geodatabase. An edit session is started on
a polygon and a point feature class in the DEFAULT version (see
Figure 4A). A new polygon feature is added (see Figure 4B). Next, an
existing point feature is deleted (see Figure 4C). Lastly, an attribute
property for two polygon features is modified in one operation, then the
edit session ends and edits are saved (see Figure 4D). For each edit, the
state ID incremented by a value of one. The DEFAULT version now
points to state 3.
 In the previous example, the geodatabase state ID increased because
editing was performed through the DEFAULT version. If the scenario had
included another edit session with another version, the state ID would have
also grown by the number of edits performed in the second edit session.

Modi�cation and
End Edit Session

DEFAULT 3

2

1

Deletion 2

1Addition 1

Editing Sequence

A
ArcMap Session:

Start Editing

State ID

DEFAULT 0

B
ArcMap Session:
Add New Feature

State ID

DEFAULT 0

C
ArcMap Session:
Delete a Feature

State ID

DEFAULT 0

D
ArcMap Session:

Modify Features and End

State ID

0

Project 1 Project 2

User 1 User 2

DEFAULT

A
Edit DEFAULT

Project 1 Project 2

User 1 User 2

DEFAULT

B
2-Level Version Tree

QA

C
3-Level Version Tree

User 1 User 3User 2

DEFAULT

Figure 3: Three example version
workflow strategies

44 ArcUser Winter 2010 www.esri.com

Figure 4: Example editing workflow and
state ID growth in a geodatabase

www.esri.com ArcUser Winter 2010 45

Special

 Figure 5 illustrates a two-level version tree editing workflow. Two
versions (Project 1 and Project 2) were created from DEFAULT. Ini-
tially, they were both exactly the same as DEFAULT and pointed to state
0. As User 1 starts an edit session and adds a new feature, the state ID
increases by one. When User 2 begins an edit session, a new separate
branch is created from DEFAULT to record edits. In this scenario, these
editing operations occur as follows:
1. User 2 modifies an existing feature.
2. User 1 merges two features into a single feature.
3. User 2 deletes a feature.
 The order of these edit operations is recorded with corresponding
state IDs that represent each change made in the geodatabase.
 State IDs in the geodatabase can be conceptually thought of as
being maintained in a treelike structure. This structure, called a state
tree diagram, is a logical map between states in a geodatabase. As the
geodatabase is edited over time, a lineage of states is maintained that
identifies all the changes that have occurred in a version. To determine
the lineage for a specific version, follow the most direct path up the
state tree to state 0.
 At the end of the example in Figure 5, DEFAULT points to state 0.
Project 1 points to state 3 and has a lineage of 3, 1, 0; and Project 2 points
to state 4 and has a lineage of 4, 2, 0. Version parent-child relationships
can be derived from the state lineages. Both the Project 1 and Project 2
versions reference newer state IDs in contrast to DEFAULT, and their
lineages contain the state ID that DEFAULT references: state 0. This
indicates that DEFAULT is likely an ancestor version to them. In this
case, DEFAULT is the parent version to both Project 1 and Project 2.

Figure 6: Version Manager dialog box in ArcGIS

Version Management
The number of versions that exist within an enterprise ArcSDE geodata-
base can be seen in the Version Manager dialog box in ArcCatalog and
ArcMap (as shown in Figure 6). Version Manager will show all versions
in a geodatabase, except those marked as private—those versions will
only be visible to their respective owners.

 Versions can be created or deleted from the Version Manager dialog
box. As stated earlier, it is important to implement a versioning work-
flow strategy that best fulfills the requirements of the business work-
flow. The complexity of managing versions in a geodatabase increases
as more versions are used.
 Edits that are made within a version are isolated to that version until
its owner or the ArcSDE administrator decides to merge the changes
into another version. The exception to this statement is schema changes.
When the schema in a version is changed—for example, by adding a
new field to a table—the change applies to all other versions. The opera-
tional task of properly merging edits between versions in an enterprise

Continued on page 46

Project 1 3

1

Project 24

2

State ID

DEFAULT 0

DEFAULT

Project 1 Project 2

User 1

Edit 1:
Addition

Edit 3:
Merge

Edit 2:
Modi�cation

Edit 4:
Deletion

User 2

Edit Session 1 Edit Session 2

Original
Feature Class

Figure 5: Editing in different versions
and state ID growth in a geodatabase

46 ArcUser Winter 2010 www.esri.com

Versioning 101
Continued from page 45

 To perform a reconcile operation, there can only be one user editing
the edit version. Since a version spans all the versioned objects in the
geodatabase, any features or rows that were modified in the target version
will be merged into the edit version. As the majority of these features
and rows are not likely to be in conflict, they will merge seamlessly into
the edit version. For example, if a new polygon feature was added in the
target version, after the reconcile process, the polygon feature would ap-
pear in the edit version. The editor would then decide whether to save the
changes in the edit version.
 At a conceptual level, a reconcile process involves merging edits
from one branch of the state tree with a different branch of the state tree.
Figure 8 shows an example reconcile operation between two versions:
QA and a child version of QA, Project 1. When Project 1 is initially cre-
ated, it is the same as QA. An edit session is started on QA, a new feature
is added, and that edit is saved. Next, a separate edit session is started on
Project 1 and a new feature is added, but those changes are not saved yet.
The editor for Project 1 then performs a reconcile process with the QA
version, with QA as the target version and Project 1 as the edit version.
All features that have been added, deleted, or modified in the QA version
will be brought into the Project 1 version.

The reconcile process can occur either implicitly or explicitly.

 Implicit—A reconcile operation will occur implicitly when there
 are multiple editors editing the same version (see Figure 3A). Each
 editor maintains his or her own branch in the state tree for the dura-
 tion of an edit session. When an editor attempts to save the edits in
 his or her edit session, a reconcile operation occurs to push the edits
 in the editor’s branch to the branch currently referenced by the ver-
 sion. With multiple editors in one version, each time edits are saved,
 the reconcile process is executed. There is no choice of when the rec-
 oncile operation happens; it always occurs when edits are saved.

 Explicit—When performing a reconcile operation between differ-
 ent versions (as shown in Figure 8), an editor chooses when he or
 she wants the reconcile process to be executed. This differs from an
 implicit reconcile process, which occurs when edits are saved.
 Regardless of how reconciliation occurs the mechanics are the same.
The difference between implicit and explicit reconcile processes is when
the reconcile process occurs and how the conflict detection options are
specified.

Possible Conflicts during Reconciliation
In some cases, a small percentage of features and objects may be in con-
flict when comparing the target version and the edit version. Conflicts can
occur in two editing scenarios: when the same feature is updated in both
the target and edit versions or when the same feature is updated in one
version and deleted in the other.
 In practice, conflicts will not be encountered frequently for most rec-
onciliation operations, because in many business workflows, versions
typically represent different projects with distinct geographic areas (e.g.,
editing different areas of a map). Therefore, the likelihood of conflicts
occurring is rare. Conflicts usually arise when editors are editing features
that are in close proximity.
 When performing a reconcile operation, ArcGIS finds conflicts in one
of two ways: by object ID or by attribute. Conflict by object ID means
that a feature is identified to be in conflict when any part of it (e.g., ge-
ometry or attributes) has been edited in both the target and edit versions.
Conflict by attribute means that a feature is identified to be in conflict
only when the same attribute (e.g., the same attribute field) has been ed-
ited in both the target and edit versions.

QA

Project 1

Reconcile

Original
Feature Class

Edit:
Addition

Edit:
Addition
and Save

Figure 8: Example
reconcile process

Edit

Target

Changes in
Target Version

ArcSDE geodatabase is achieved in ArcGIS through two operations:
reconciling and posting. These two operations are typically performed
in tandem (i.e., reconciling followed by posting) to combine edits from
one version with another version.

Reconcile
Reconciling is the first step in merging edits between two versions. In
this process, edits from an ancestor version (called the target version)
are brought into the version being edited in an edit session in ArcMap
(called the edit version). A target version can be any version in the direct
ancestry (i.e., in the lineage) of the version being edited. For example,
referring back to the state tree diagram in Figure 5, DEFAULT is an
ancestor version to Project 1, because DEFAULT points to state zero
(0), which is part of Project 1’s lineage: 3, 1, 0. The reconcile process
involves merging edits from the target version into the edit version, as
shown in Figure 7.

Figure 7: Diagram of the
reconcile process

www.esri.com ArcUser Winter 2010 47

Special

Continued on page 48

 Default conflict resolution policies can be set to automatically resolve
conflicts in favor of either the target version or the edit version. There is
also the option to have the editor of the edit version resolve detected con-
flicts manually, by reviewing each conflict using the interactive Conflicts
Resolution dialog box in ArcMap. Each conflict can be closely examined,
and the editor decides whether to apply the target version edit, keep the
edit version edit, or revert the feature to its state at the beginning of the
edit session (i.e., the common ancestor state). After all conflicts (if any
exist) are resolved, the reconcile process is considered completed and
the editor can save edits and continue editing or proceed with a post
operation.

Post
This is the second step when merging edits between two versions. This
process must always follow a reconcile operation. A post process syn-
chronizes the current edit version with the target version. All edits made
in the edit version are saved into the target version, making both versions
identical (see Figure 9).
 Unlike a reconcile process, posting cannot be undone once it is per-
formed because the changes are applied to a version outside of an edit
session. Figure 10 conceptually illustrates a post operation between the
QA and Project 1 versions. The post operation is performed immedi-
ately following the reconcile process previously discussed and shown in
Figure 8. After posting, the new feature added in Project 1 (edit version)
is merged into the QA version (target version). At the end of the recon-

Figure 9: Diagram of the
post process

cile and post workflow, both the QA and Project 1 versions will have the
same view of the geodatabase. In other words, they are considered to be
identical. At this point, the editor of Project 1 has the option to continue
to make more edits in the edit session, then perform another reconcile
and post process to synchronize the two versions or simply save edits
and stop the edit session on the Project 1 version.

Edit

Target

Changes In
Edit Version

800 . 688 . 2656
www.ca r t e g r aph . comm

o
b

il
iz

e
 y

o
u

r
w

o
rk

fo
rc

e

CartêGraphmobile users have lowered their sign
inspection operating costs by up to 47%.

Isn’t it about time that you did, too?

Simplicity. Capability. Affordability.

With the power of CartêGraphmobile solutions,
it’s all within your reach.

48 ArcUser Winter 2010 www.esri.com

Compress
Over time, an actively edited enterprise ArcSDE geodatabase typically
accumulates hundreds of thousands of state IDs (representing edits stored
in delta tables) and a deep and complex state tree. This can negatively
impact performance. Periodically, the ArcSDE administrator must com-
press the ArcSDE geodatabase to remove any states not referenced by a
version. A compress operation can reduce the depth of the state tree and
helps maintain performance.
 Compressing an ArcSDE geodatabase never removes data that is ac-
cessed through a version’s lineage. It cleans up only unused data. A com-
press operation is implemented as a series of potentially large DBMS
transactions that remove and renumber states inside one database transac-
tion to ensure that the DBMS can restore the geodatabase to a consistent

Versioning 101
Continued from page 47

Figure 11: State tree diagram before and after a compress operation

state. Figure 11 shows what happens to the state tree when a geoda-
tabase is compressed. Before the compress operation, there are three
versions: DEFAULT, Project 1, and Project 2, which reference states
0, 3, and 4, respectively. A compress operation removes states that are
not directly referenced by a version (states 1 and 2 in this example)
and deletes them from the state tree. The edits they reference in the
delta tables are also removed. Unused data in the geodatabase is delet-
ed. A compress also moves entries in delta tables common to all ver-
sions into the base tables, reducing the amount of data the DBMS will
need to search through for version queries. Both actions help maintain
performance in the geodatabase.

Other Editing Models
At the 9.2 release, two additional editing models were added to ArcSDE
geodatabases: nonversioned editing and versioned editing with the option
to move edits to base. Nonversioned editing enables users to perform ed-
its directly on the base tables of geodatabase datasets. It is analogous to a
standard database transaction model for editing geospatial data.
 Versioned editing with the option to move edits to base enables users
to perform versioned editing as discussed in this article but also supports
some nonversioned editing functionality. This editing model functions
like regular versioned editing except when editing the DEFAULT ver-
sion. When the DEFAULT version is edited through this editing model,

changes are made directly to the base tables of geodatabase datasets.
Also, when versions are reconciled and posted back to the DEFAULT
version, edits in the delta tables are moved to the base tables.
 Both editing models have some limitations on the types of datasets
that can be edited and do not support geodatabase replication. More in-
formation on both editing models can be found in the ArcGIS Desktop
Help Online documentation.

Conclusion and Resources
This article discussed the main concepts related to versioned editing in
an ArcSDE geodatabase. It presented many of the common terms and
concepts regarding concurrent multiuser editing in ArcSDE geodatabas-
es. Versioning is the framework that supports historical archiving and
geodatabase replication functionality. When implementing versioned
editing, it is important to select the versioning workflow that best meets
the organization’s business requirements.
 For more detailed information on the mechanics of how versioning
works in an ArcSDE geodatabase, read the ESRI white paper Version-
ing, available from support.esri.com.
 For more background on how state trees behave in versioned
editing, read ESRI Knowledge Base article #32352—FAQ: How
does the state tree change during an edit session? also available
from support.esri.com.
 For more examples on versioning workflow strategies, read the ESRI
white paper titled Versioning Workflows, also available from support.
esri.com.
 For some tips and tricks on versioning, listen to the ESRI
Instructional podcast ArcSDE: Top Five Versioning Myths available on
esri.com.

QA

Project 1

Post Changes
from Edit Version

State ID

Project 1 Project 2
4

DEFAULT 0

State ID

AfterBefore

Project 1
3

1

Project 2
4

2

DEFAULT 0

3

Figure 10: Example
post process

