
Flex Viewer Widget Communication Explained

Page 1 of 4 Prepared By: Robert J. Scheitlin

In Flex Viewer there is a built in widget communication/messaging capability that is very useful for
passing data from one widget to another, but it is a aspect of the Flex Viewer that in un documented.

This document will attempt to explain in detail the methods used in widget messaging and what is going
on behind the scenes. I will also cover advanced topics such as opening one widget from another so you
can message data to that widget.

 I'll begin by explaining that widget messaging is accomplished by dispatching and listening for
AppEvents. Widget messaging is managed using the DataManager.as. The DataManager listens for
AppEvent.DATA_FETCH_ALL, AppEvent.DATA_PUBLISH and AppEvent.DATA_FETCH.

The below model is the flow of data when Widget-A and Widget-B are both open and Widget-B is
listening for AppEvent.DATA_PUBLISH

Figure 1

 If Widget A calls addSharedData and Widget-B is not opened yet than listening for
AppEvent.DATA_PUBLISH will not catch the event because it has already been dispatched. In this case
you will have to call fetchSharedData in Widget-B and listen for AppEvent.DATA_SENT. There is a big
difference between what is returned by AppEvent.DATA_PUBLISH and AppEvent.DATA_SENT.
AppEvent.DATA_PUBLISH will have an ArrayCollection as the event.data and AppEvent.DATA_SENT will
have a HashTable containing multiple ArrayCollections that have unique keys to identify them.

The below diagram is the flow of events when you need to message data from Widget-A to Widget-B
when Widget-B is not yet initialized (opened)

•Calls addSharedData
• Passing a key and an ArrayCollection

in the addSharedData call
• The BaseWidget dispatches

AppEvent.DATA_PUBLISH

Widget-A

• Listens for the
AppEvent.DATA_PUBLISH

•Adds that key and object to the
dataTable (if it does not exist).

• Then dispatches
AppEvent.DATA_NEW_PUBLISHED

DataManger •Can listen for the
AppEvent.DATA_NEW_PUBLISHED
but it is quicker to bypass
DataManager and Listen for
AppEvent.DATA_PUBLISH

Widget-B
 Bypass DataManager

Flex Viewer Widget Communication Explained

Page 2 of 4 Prepared By: Robert J. Scheitlin

Figure 2

So to have a widget that listens for data from another widget whether that widget is opened yet or not
you have to listen for two separate AppEvents (AppEvent.DATA_PUBLISH & AppEvent.DATA_SENT) and
call fetchSharedData in its init function.

In order to have Widget-A open Widget-B so that it can share data with it you have to use the label of
Widget-B and some new standard Flex Viewer functionality in 2.4. Here is a code block that
demonstrates that:

In the code block above I use the Singleton ViewerContainer to get access to the widgetManager and a
function called getWidgetId and pass that function the label of the widget I am searching for, that
returns a number (id) of that widget. Using that id I can get the widget using the getWidget function in
the widgetManager. As the returned IBaseWidget could be any widget I set a variable to an unknown
type using :* and that allows me to call a specific function on a unknown widget type.

Widget-A Calls addSharedData The BaseWidget dispatches
AppEvent.DATA_PUBLISH

DataManager adds that key
and object to the dataTable (if

it does not exist).

You open Widget-B and in the
init it listens for

AppEvent.DATA_SENT and
calls fetchSharedData

The BaseWidget dispatches
AppEvent.DATA_FETCH_ALL

DataManager Dispatches
AppEvent.DATA_SENT

Widget-B hears the
AppEvent.DATA_SENT and

runs the function defined in
the listener

var id:Number = ViewerContainer.getInstance().widgetManager.getWidgetId("Enhanced Search");

var bWidget:IBaseWidget = ViewerContainer.getInstance().widgetManager.getWidget(id, true) as
IBaseWidget;

if (bWidget){
 var vSW:* = bWidget;
 vSW.queryFromURL("aaa",2,0);
}

Flex Viewer Widget Communication Explained

Page 3 of 4 Prepared By: Robert J. Scheitlin

To put all this together this is the code you will need to add to each widget:

Widget-A (the widget that will shared some specific data with Widget-B)

Required Imports:

Some Function to call the addSharedData and launch the Widget-B:

Widget-B (the widget that will receive the shared data from Widget-A)

Required Imports:

Add these lines to the end of the Init Function in Widget-B:

 import mx.collections.ArrayCollection;
 import com.esri.viewer.AppEvent;
 import com.esri.viewer.BaseWidget;
 import com.esri.viewer.IBaseWidget;
 import com.esri.viewer.ViewerContainer;

private function someFunction(evt:Event):void
{
 var msArr:ArrayCollection = new ArrayCollection();
 //Add an object or for example a string to the ArrayCollection
 msArr.addItem("Some text");
 addSharedData("MiniSearch_Search", msArr);
 //These next lines are what is needed if Widget-B is not already opened
 //and you want to open it and send your shared data
 //This code will only work in Flex Viewer 2.4
 var id:Number = ViewerContainer.getInstance().widgetManager.getWidgetId("Enhanced Search");
 var bWidget:IBaseWidget = ViewerContainer.getInstance().widgetManager.getWidget(id, true) as IBaseWidget;
 if (bWidget){
 var vSW:* = bWidget;
 vSW.queryFromURL("aaa",2,0);
 }
}

 import com.esri.viewer.AppEvent;
 import com.esri.viewer.utils.Hashtable;

 AppEvent.addListener(AppEvent.DATA_PUBLISH, sharedDataUpdated);
 AppEvent.addListener(AppEvent.DATA_SENT, sharedDataUpdated2);
 fetchSharedData();

Flex Viewer Widget Communication Explained

Page 4 of 4 Prepared By: Robert J. Scheitlin

Most all Flex Viewer 2.4 widgets already have a sharedDataUpdated function. So you just need to add to
it. This is the function that will get called if Widget-B is already open when Widget-A calls
addSharedData()

This is the function that will get called when the widget is initialized and fetchSharedData is called,
which in turn dispatches an AppEvent.DATA_SENT event.

 private function sharedDataUpdated(event:AppEvent):void
 {
 var data:Object = event.data;

 if (data.key == "Deactivate_DrawTool")
 {
 setMapAction(null, null, null, null);
 if (selectedDrawingIcon)
 {
 selectedDrawingIcon.filters = [];
 selectedDrawingIcon = null;
 }
 }
 if (data.key == "MiniSearch_Search")
 {
 if (data.collection[0]){
 //The function you want to call in this widget
 //data.collection[0] is the first item in the arrayCollection
 //example:
 queryFromURL(data.collection[0], 2, 0);
 }
 }
 }

private function sharedDataUpdated2(event:AppEvent):void
{
 var dataTable:Hashtable = event.data as Hashtable;
 if (dataTable.containsKey("MiniSearch_Search"))
 {
 var recAC:ArrayCollection = dataTable.find("MiniSearch_Search") as ArrayCollection;
 if (recAC[0]){
 queryFromURL(recAC[0], 2, 0);
 }
 }
}

