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GEOSTATISTICS WITHOUT 

TEARS 
 

A Practical Guide to Geostatistics, 

Variograms and Kriging 
 

by Gregg Babish 

GIS Specialist 

Environment Canada 

illustrations by Mark Gilchrist 

Environment Canada 

 

“In the dawn of the new millenium, an ever-increasing number of companies are 

using geostatistics. Today, this new science, based on numerous disciplines, has 

well and truly come into its own.” (http://www.geovariances.fr/) 

PREFACE 

Geostatistics is a branch of applied statistics developed by George Matheron of 

the Centre de Morphologie Mathématique, Fontainebleaue, France. Geostatistics 

was originally developed for the mining industry to estimate changes in ore 

grade. Today, the principles of geostatistics are applied in a number of scientific 

disciplines. 

Geostatistics is used to estimate a data value for locations that cannot be 

sampled directly by examining data taken at locations that can be sampled. 

The ability to predict the unknown locations is influenced by the spatial 

arrangement of the known sample locations. If a model of spatial correlation 

can be established, this model can be used to interpolate data values at the 

unknown locations. 

The term geostatistics typically refers to spatial estimation using a technique 

known as kriging. Kriging is essentially a weighted moving average method for 

estimation based on known observations. The results of kriging are dependent 

upon the distance between the sampling locations and the point of estimation. 

The effectiveness of kriging depends upon how well the observation points 

represent the phenomenon under study and the appropriate selection of the model 

parameters. 

It has been said that “ . . . there is to be no geostatistics without tears” (Oliver 

and Webster, 1991). The intent of this document is to provide the reader a 

clear introduction and understanding of surface interpolation methods, 

geostatistics, development of the variogram, semivariogram models, 

development of the kriged surface, and the affects of kriging parameter 

changes. This report was developed to serve as supporting documentation for 

a hands-on training course on geostatistics that is presented by the author. 

Hopefully, no tears will be shed. 
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INTRODUCTION 

The creation of data surfaces is a frequent requirement for environmental 

Geographic Information System (GIS) applications. Surface models can be 

used for a variety of purposes including interpolating between actual data 

measurements, identifying data anomalies and establishing confidence 

intervals around predictions. These surfaces include development of digital 

elevation models (DEMs), digital terrain models (DTMs), population 

densities, groundwater tables, contamination plumes, soil properties, 

vegetation types, and climatic measurements. 

The surfaces created are then used to provide information for subsequent 

analysis such as flooding scenarios, population change, distribution of 

contaminants, groundwater modeling, and weather change. The accuracy of 

subsequent analyses depends directly on the accuracy of the surfaces created 

in the early stages of analyses. 

Data to create these surfaces are usually collected through field sampling and 

surveying. As a rule, data collection can only be conducted at a limited 

number of point locations due to limited resources and high costs. In order to 

generate a continuous surface, such as migratory bird population counts 

across a region, some type of interpolation method must be used to estimate 

data values for those locations where no samples or measurements were 

taken. 

INTERPOLATION METHODS 

The procedure of estimating the value of properties at unsampled sites within 

the area covered by existing point observations is called interpolation. The 

best interpolation method to use depends on the data, the objectives of the 

study, as well as the ease of generating a surface versus accuracy of the 

developed surface. There is no interpolation method that guarantees the best 

results for all data sets. Interpolation methods that are commonly available to 

the GIS user are discussed below. 

Splines 

Although their mathematical equivalent is now used, splines started out 

being used as flexible pieces of wood or metal. These were originally used to 

fit curvilinearly smooth shapes when the mathematics and/or tools were not 

available to machine the shapes directly (boat hulls and airplane wings). 

Splines are useful in fitting a smooth line or surface to irregularly spaced 

data points. The most common spline is the cubic spline. Some variations of 

the spline method include minimum curvature, thin plate spline, and 

completely regularized splines. 

A spline is an interpolation of a curve between measured data points with a 

series of functions. The splined curve goes through the data points exactly 

and assumes a curved shape elsewhere. Some supposedly “spline” programs 

are line smoothing functions, not spline functions. These programs smooth a 

line by generally going through the midpoints on a line segment, not the 
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endpoints. A true spline will keep the original points on the line. If line 

smoothing is what is required, these scripts will work. If a spline is required, 

be careful. 

There are a number of known problems with splines. Splines are poor for 

surfaces which show marked fluctuations,  causing wild oscillations in the 

spline (climatic variables for example). Extrapolating beyond the edges of 

the data domain often yields erratic results. This is because there is no 

information beyond the data to constrain the extrapolation and splines will 

grow to large values (positive or negative). Closely spaced data points can 

develop embolisms. However, if a smooth surface is required, splines can 

frequently give a good, usable smooth fit to a data set. Splines tend to 

emphasize trend rather than anomalies. 

Inverse Distance Weighted (IDW) 

The inverse distance method is fundamentally a function that 

averages the surrounding points (Jones, et. al., 1986). Weighting 

is assigned to observational data points through the use of a 

weighting power that controls how the weighting factor drop off 

as the distance from the point increases. The greater the 

weighting power, the less effect further away points have on the 

interpolation.  

Simplicity, speed of calculation, programming ease, and 

reasonable results for many types of data are some of the advantages 

associated with inverse distance weighted interpolation. The number of 

surrounding points used to interpolate the grid value can significantly change 

the map output. Because inverse-distance is an averaging (smoothing) 

technique it cannot interpolate above or below the surrounding data, which 

tends to generate flat areas. Distance-weighted average preserves sample data 

values, and is therefore an exact interpolation technique. 

The inverse distance interpolation method is easily affected by the uneven 

distribution of data points since an equal weight is assigned to each of the 

data points even if they are a cluster. IDW is fast, but has a tendency to 

generate “bull’s eyes” around the actual data points, and tends to emphasize 

both trends and anomalies. 

This method is sometimes called the nearest neighbor weighted interpolation. 

Other inverse distance methods are the Shepard’s Method that uses an 

inverse distance weighted least squares method, and the inverse distance to a 

power interpolator. 

Although distance-weighted methods underlie many of the techniques in use, 

they are far from ideal. IDW is probably always the worst technique to 

implement (Goodchild, 1999). 

Triangulation 

When a set of arbitrarily distributed data points is connected in a triangular 

network, the resulting lattice work is irregular, and is called a Triangular 

Irregular Network (TIN). The TIN is a vector data structure. Various 

techniques are available for the construction of TINs using a computer. In 
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some software, the TIN is generated and then used to create a continuous 

raster surface model. 

Triangulation is a fast, flexible and popular interpolation method that offers 

several advantages. When a surface has significant relief features, 

triangulation generates more accurate surface representation by maintaining 

breakline features such as stream channels, shorelines, and relief features. 

Triangulation can represent a surface with fewer data points than grid based 

methods. Triangulation works best when data points are evenly distributed 

over an area. Sparse data sets  result in distinct triangular facets. 

The main disadvantage of triangulation is that the generated surfaces are not 

smooth and may have a jagged appearance. Because triangulation is an exact 

method – the original data points are honored exactly – triangulation is 

generally not suitable for extrapolation beyond the observed data points. 

The Voronoi diagram, sometimes named Dirichlet tessellation, is one of the 

most fundamental and useful constructs defined by irregular lattices. The 

term tessellation means to break an area into pieces or tiles. A Voronoi 

polygon is defined by lines that bisect the lines between a center point and its 

surrounding points. The bisecting lines and the connection lines are 

perpendicular to each other. Geographical interest in the Voronoi diagram 

originates from the climatologist A. H. Thiessen’s use of Thiessen polygons 

to define regions that surround unevenly distributed weather stations.  

Delaunay triangulation, named after B. Delaunay, is closely related to the 

Voronoi diagram. Using the Voronoi diagram as a basis, Delaunay 

triangulation can be constructed by drawing lines between the points in 

adjacent polygons. Delaunay triangulation is the most common triangulation 

technique. 

Triangular models have been used in terrain modeling since the 1970s, and 

are sometimes used to create Digital Terrain Models (DTMs). Commercial 

systems using TIN began to appear in the 1980's as contouring packages and 

some were embedded in GIS packages.  

Certain types of terrain are very effectively divided into triangles with plane 

facets. This is particularly true with fluvially-eroded landscapes. However, 

other landscapes, such as glaciated ones, are not well represented by flat 

triangles. Triangles work best in areas with sharp breaks in slope, where TIN 

edges can be aligned with breaks, such as along ridges or channels. 

Due to limitations of computers and the complexity of TIN data structures, 

triangular models have been overshadowed by gridded models. Today the 

use of triangular models is increasing. 

Trend Surface Analysis 

Trend surfaces are typically used to determine whether spatial trends exist in 

a data set, rather than to create a surface model to be used in further analyses. 

Trend surfaces may also be used to describe and remove broad trends from 

data sets so more local influences may be better understood. Because the 

resulting surface is an ideal mathematical model, it is very smooth and is free 

from local detail. 

 

 



Geostatistics 9 

The idea behind the trend surface interpolation is to fit a least-squares  

surface to observational data points by using polynomial regression. Trend 

fits one of three mathematically-defined ideal surface models, linear, 

quadratic, or cubic, to a point data set. 

"Trend" analysis is the geology profession's name for a mathematical method 

of separating map data into two components - that of a regional nature, and 

local fluctuation (Davis, 1973). Trend surface analysis is the most widely 

used global surface-fitting procedure. A global interpolator  derives the 

surface model by considering all the data points at one. The resulting surface 

give a “best fit” for the entire sample data, but may provide a very poor fit in 

particular locations. A local interpolator,   calculates new values for 

unknown locations by using the values of known locations that are nearby. 

Trend surface analysis is an inexact interpolator. Since trend surface is a 

smoothing and approximate method, the generated surface rarely pass 

through original data points. 

The advantage of trend analysis is that it is easy to understand the way the 

surfaces are estimated. It can be used to show broad features of the 

observational data points. Trend surfaces are appropriate for estimating a 

grid matrix in certain circumstances. If the raw data are statistical in nature, 

with perhaps more than one value at an observation point, trend surfaces 

provide statistically optimal estimates of a linear model that describes their 

spatial distribution. 

There are a number of disadvantages to a global fit procedure. The most 

obvious of these is the extreme simplicity of a polynomial surface as 

compared to most natural surfaces. Trend surface analysis is highly affected 

by the extreme values and uneven distribution of observational data points. 

The problem is further complicated by the fact that some data points are 

more informative than others. For example, in interpolating topographic 

surfaces, the data points taken from the peaks and depressions are more 

significant than the points taken from level or sloping locations. Polynomial 

trend surfaces also have a tendency to estimate higher or lower values in 

areas where there are no data points, such as along the edges of maps. All 

surface estimation procedures have difficulty extrapolating beyond the area 

of data control, but trend surfaces seem especially prone to the generation of 

seriously exaggerated estimates. 

Kriging 

Kriging is a weighted moving averaging method of interpolation, devised by 

geostatisticians to provide the best local estimate of the mean value of a 

regionalised variable. Kriging is an advanced application of Gauss’ Theory 

of Errors. The main difference between kriging and a simple distance-

weighted average is that kriging allows flexibility in defining the 

interpolation model. 

Measurements that change at every location they are measured at are called 

regionalized variables. Regionalised variables describe phenomena with 

geographical distribution, such as surface elevation, geophysical 

measurements, soil contamination, and groundwater quality. Regionalised 

variables are variables that fall between random variables and completely 

deterministic variables. Regionalised variables recognize the fact that 
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properties measured in space (or time) follow an irregular pattern that cannot 

be described by a mathematical function. 

Kriging is done in two parts. First, the sample semivariance is used to estimate 

the shape of the variogram (a curve that represents the semivariance as a 

function of distance). The variogram describes the spatial relationship between 

the data points. 

Second, the estimated semivariance function is used to determine the weights 

needed to define the contribution of each sampled point to the interpolation. 

Sample points close to the point for which an estimated value is to be 

generated contribute the most to the interpolation.  

Although other interpolation methods may be used, kriging is typically 

applied since kriging overcomes many of the shortcomings of traditional 

interpolation methods. Interpolation techniques such as inverse distance and 

triangulation do not take into account a model of the spatial process (the 

variogram).  

The results from kriging are generally of higher quality and more realistic 

compared to techniques such as inverse distance and triangulation. Kriging 

can provide a measure of the error or uncertainty of the contoured surface. 

Since the estimation variances can be mapped, the confidence placed in the 

estimates can be calculated. 

A variance plot provides information on how well the interpolated values fits 

the overall model that was defined by the user. The plot of the variance can 

be used as a diagnostic tool to refine the model. The goal is to develop a 

model with an even distribution of variance that is a close as possible to zero. 

The estimation variance can also be used to determine where more data is 

needed if future sampling is planned. Kriging reduces the extreme weighting 

of values caused by irregular distribution of sample points, especially those 

which might result from clustering. 

For example, where samples are strongly autocorrelated over small sampling 

intervals, kriging can show where to add sample points to bring estimation 

precision to a desirable level in sparsely sampled regions. Conversely, where 

samples are weakly autocorrelated over small intervals, kriging can show that 

additional sampling in a given region will add little additional precision to 

interpolation estimates. 

Computationally, it is often desirable to choose a limited number of sample 

points to perform the interpolation, since the weights from distant sample 

points are often negligible and the error associated with leaving them out is 

minor. Kriging is not a suitable method for data sets which have spikes, 

abrupt changes or breaklines. Kriging works best with data sets which have 

regions of densely scattered data and regions of lightly scattered data. 

Kriging can take into account redundant data (clustering) and possible 

anistropies. 
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HISTORY OF KRIGING 

Variation of crop yields (Mercer & Hall, 1911) was one of the earliest 

records of geostatistical application. They found that the plot-to-plot variance 

decreased as the size of the plots increased, up to some limit, beyond which 

the variance stabilized. It was noted that there was strong correlation 

between crop yields on adjacent plots (spatial dependence). 

In the 1940s, the mining industry was using the sample mean of core-sample 

assays to estimate the average grade in a prospective mining block. Those 

estimates were then used to mine selectively. This method of estimation does 

not provide a very good estimate of total recoverable ore. Local variability can 

make or break a mining venture because concentrations of high-grade ore are 

easier and hence more profitable to mine, while regions of low-grade ore 

should be ignored. 

In the early 1950’s, Danie.G. Krige, a South African mining engineer 

working on the Witwatersrand looked at this problem and his work 

culminated in a benchmark paper (Krige, 1951). Professor Herbert Sichel is 

credited with the first significant use of mathematical statistics for mineral 

evaluation on the South African gold mines and worked extensively on 

problems associated with gold and diamonds until his death in 1995. 

Georges Matheron, an engineer with Ecoles des Mines, Centre de 

Morphologie Mathématique, Fontainebleaue, France, became aware of 

Krige’s approach to ore reserves calculation. Out of Matheron’s research 

came a spatial interpolation method which he called kriging (pronounced 

“kree-ging” or “kree-jing”) in honor of Dr. Krige. Matheron’s first English 

paper on this matter appeared in 1963 (Matheron, 1963a). 

While Matheron was developing his theory of prediction in France, the 

meteorologist L.S. Gandin in the Soviet Union was doing remarkably similar 

work (Gandin, 1963). 

By the middle of the 1970s, knowledge of geostatistics had begun to spread 

beyond the minerals industry. During the late 1970s standard geostatistical 

techniques proved suited to describe the spatial distribution of soil. Kriging 

was applied to solving hydrological problems for point and areal rainfall 

estimation, and the design of rainfall measurement networks, and simulations 

(Delhomme, 1978). 

During the 1980s and 1990s more applications of geostatistics appeared in 

the fields of meteorology, aerial distribution of acid rain and aerial 

contaminants, surface and subsurface hydrology, air and water pollution, 

disease outbreaks, and migratory bird population estimates. 

GEOSTATISTICS 

Conventional (univariate) statistics are based on random, independent 

variables which assume zero continuity and allow for no extension of each 

data value. This makes it theoretically impossible to estimate individual cells 

or points in a map as all of the points should be given the same overall mean 

value. 
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Geostatistics assumes that adjoining points are correlated to each other 

spatially. This continuity is measured and then used for obtaining estimates. 

The relationship expressing the spatial correlation is measured in a function 

called the variogram. 

The rationale behind geostatistics and spatial interpolation is the observation 

that points closer together in space are more likely to have similar values 

than points further away – Tobler's Law of Geography (Tobler, 1979). 

Tobler’s law is often cited as the First Law of Geography, where “everything 

is related to everything else, but near things are more related than distant 

things.” This is also know as autocorrelation, samples collected close to one 

another are often more similar than samples collected further away, whether 

in space or in time. 

As describe above, geostatistics is basically a two step process: 

1.  define the degree of autocorrelation among the measured data 

points, and once the spatial or temporal dependency is 

established, 

2.  interpolate values for points not measured using kriging 

algorithms based on the degree of autocorrelation. 

An understanding of how data values vary as a function of distance allows 

interpolation of values at unsampled locations. Conventional statistics cannot 

take this into account. Two distributions might have the same mean and 

variance, but differ in the way they are correlated with each other. 

Kriging methods may be used as either a global or local interpolator. 

However, local implementation is most often used. Kriging preserves sample 

data values and is therefore an exact interpolator.  

VARIOGRAMS 

Geostatistics has the ability to quantify the correlation between any two 

values separated by a distance (known as the lag distance) and use this 

information to make predictions at unsampled locations. Semivariance is a 

measure of the degree of spatial correlation among sample data points as a 

function of the distance and direction between the sample data points. The 

variogram controls the way that kriging weights are assigned to points during 

interpolation, and consequently controls the quality of the results. 

The semivariogram, or simply the variogram, is a graph describing the 

expected difference in value between pairs of samples within a given 

orientation. The semivariance increases with distance until at a certain 

distance away the semivariance will equal the variance around the average 

value, and will therefore no longer increase, causing a flat region to occur on 

the semivariogram called the sill. From the point of interest to the distance 

where the sill begins is termed the range of the regionalised variable. Within 

this range, locations are related to each other, and all known samples 

contained in this region (the neighborhood) must be considered when 

estimating unknown points. 
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The shape of the semivariogram function is typically one of four forms: 

linear, spherical, exponential, or Gaussian. Since there are only limited 

observational data points available, it is impossible to compute the absolute 

semivariogram. The semivariograms is estimated from observed data values 

by selecting the function which best fits the observed data points. This 

process involves a great deal of interpretation, and may require a number of 

trial and error computations. 

CALCULATING THE VARIOGRAM 

An estimate must be made of the distance required to travel before data 

points separated by that much distance are uncorrelated. This information is 

presented in the form of the variogram – the semivariance versus the lag 

distance. Other than the work involved, it is not really difficult to calculate 

and plot the semivariogram. 

The first step is to define a lag increment (h), which is the spacing between 

any two points in the data. For the data shown in Figure 1, a 1 kilometer lag 

increment is arbitrarily defined. For each pair separated by 1 kilometer, 

calculate the difference, and then square the difference. Sum up all the 

differences and divide by twice the number of pairs. This gives the similarity 

measure (h) for the variogram for that particular lag increment or distance. 

The same is done for other lag distances of 2 kilometers, 3 kilometers, 4 

kilometers, 5 kilometers, and 6 kilometers. 

       N 

 (h)  =  (  [Z(xi) - Z(xi + h)] 2 ) / 2N 
      i=1 
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Figure 1: A two-dimensional spatial region with regionalised variable observations 

(Z). 

First Lag Distance1 

Twenty (N = 20) pairs are found for lag distance h = 1 (Figure 2a). The pairs 

in the east-west direction and their calculated differences:  

20.1 - 14.6 = 5.5 14.6 - 13 = 1.6 13 - 15.4 = -2.4 15.4 - 12.9 = 2.5 

12.9 - 16.1 = -3.2 16.1 - 16.5 = -0.4 15.7 - 11.8 = 3.9 20.9 - 17.1 = 3.8 

17.1 - 24.3 = -7.2 28.5 - 13.6 = 14.9 33.6 - 19.6 = 13.7 19.6 - 23.8 = -4.2 

29.9 - 31.3 = -1.4 31.3 - 7.5 = 23.8 7.5 - 33.3 = -25.8 33.3 - 23.3 = 10 

14.4 - 12.1 = 2.3 12.1 - 16.3 = -4.2 16.3 - 15.5 = 0.8 15.5 -55.1 = -39.6 

 

The sum of the squared differences: 

30.25 + 2.56 + 5.76 + 6.25 + 10.24 + 0.16 + 15.21 + 14.44 + 51.84 + 222.01 + 

187.69 + 17.64 + 1.96 + 566.44 + 665.64 + 100.00 + 5.29 + 17.64 + .64 + 1568.2 = 

3489.82 

The gamma for the first lag distance is: 

(1) = 3489.82/(2*20) = 87.25 

Second Lag Distance 

The lag distance h is incremented such that h = h + h = 2h. In the case of this 

example, 2 kilometers. A search is conducted for pairs at a lag distance of 2 

kilometers, oriented in the east-west direction. All pairs used for the h = 1 

search and calculation are not included in the new lag interval. 

Twenty (N = 20) pairs are found for lag distance h = 2 (Figure 2b). The pairs 

and their calculated differences:  

20.1 - 13.0 = 7.1 14.6 - 15.4 = -0.8 13.0 - 12.9 = 0.1 15.4 - 16.1 = -0.7 

12.9 - 16.5 = -3.6 11.8 - 20.9 = -9.1 20.9 - 17.1 = -3.4 35.4 - 27.2 = 8.2 

30.2 - 0 = 30.2 0 - 33.3 = -33.3 33.3 - 23.8 = 9.5 29.9 - 7.5 = 22.4 

31.3 - 33.3 = -2.0 7.5 - 23.3 = -15.8 23.3 - 18.2 = 5.1 43.7 - 14.4 = 29.3 

14.4 - 16.3 = -1.9 12.1 - 15.5 = -3.4 16.3 - 55.1 =-38.8 29.7 - 31.9 = -2.2 

 

The sum of the squared differences: 

50.41 + 0.64 + 0.1 + 0.49 + 12.96 + 82.81 + 11.56 + 67.24 + 912.04 + 1108.89 + 

90.25 + 501.76 + 4.00 + 249.64 + 26.01 + 858.49 + 3.61 + 11.56 + 1505.40 + 4.84 = 

5502.65 

 

 

The gamma for the second lag distance is: 

 = 5502.65/(2*20) = 137.57 

 

                                                           
1 The example variogram calculations have been adapted from Carr (1995). 
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Third Lag Distance 

Pairs of observations oriented parallel to the east-west direction and with lag 

distances of 3 kilometers are now listed. 

Fifteen (N = 15) pairs are found for lag distance h = 3 (Figure 2c). The pairs 

and their calculated differences:  

20.1 - 15.4 = 4.7 14.6 - 12.9 = 1.7 13.0 - 16.1 = -3.1 15.4 - 16.5 = -1.1 

15.7 - 20.9 = -5.2 11.8 - 17.1 = -5.3 13.6 - 35.4 = -21.8 0 - 19.6 = -19.6 

29.9 - 33.3 = -3.4 31.3 - 23.3 = 8.0 33.3 - 18.2 = 15.1 43.7 - 12.1 = 31.6 

14.4 - 15.5 = -1.1 12.1 - 55.1 = -43.0 33.6 - 29.7= 3.9  

 

The sum of the squared differences: 

22.09 + 2.89 + 9.61 + 1.21 + 27.04 + 28.09 + 475.24 + 384.16 + 11.56 + 64.00 + 

228.01 + 998.56 + 1.21 + 1849.00 + 15.21 = 4117.88 

The gamma for the third lag distance is: 

 = 4117.88/(2*15) = 137.26 
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Figure 2: Transects used to estimate the semi-variances at varying lag distances (h) 
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Fourth Lag Distance 

Pairs of observations oriented parallel to the east-west direction and with lag 

distances of 4 kilometers are now listed. 

Twelve (N = 12) pairs are found for lag distance h = 4 (Figure 2d). The pairs 

and their calculated differences: 

20.1 - 12.9 = 7.2 14.6 - 16.1 = -1.5 13.0 - 16.5 = -3.5 15.7 - 17.1 = -1.4 

11.8 - 24.3 = -12.5 28.5 - 35.4 = -6.9 30.2 - 33.3 = -3.1 0 - 23.8 = -23.8 

29.9 - 23.3 = 6.6 7.5 - 18.2 = -10.7 43.7 - 16.3 = 27.4 14.4 - 55.1 = -40.7 

 

The sum of the squared differences: 

51.84 + 2.25 + 12.25 + 1.96 + 156.25 + 47.61 + 9.61 + 566.44 + 43.56 + 114.49 + 

750.76 + 1656.49 = 3413.51 

 

The gamma for the fourth lag distance is: 

 = 3413.51/(2*12) = 142.23 

Fifth Lag Distance 

Pairs of observations oriented parallel to the east-west direction and with lag 

distances of 5 kilometers are now listed. 

Eight (N = 8) pairs are found for lag distance h = 5 (Figure 2e). The pairs 

and their calculated differences:  

20.1 - 16.1 = 4.0 14.6 - 16.5 = -1.9 15.7 - 24.3 = -8.6 13.6 - 27.2 = -13.6 

30.2 - 19.6 = 10.6 31.3 - 18.2 = 13.1 43.7 - 15.5 = 28.2 33.6 - 31.9 = 1.7 

 

The sum of the squared differences: 

16.00 + 3.61 + 73.96 + 184.96 + 112.36 + 171.61 + 795.24 + 2.89 = 1360.63 

 

The gamma for the fifth lag distance is: 

 = 1360.63/(2*8) = 85.04 

Sixth Lag Distance 

Pairs of observations oriented parallel to the east-west direction and with lag 

distances of 6 kilometers are now listed. 

Five (N = 5) pairs are found for lag distance h = 6 (Figure 2f). The pairs and 

their calculated differences:  

20.1 - 16.5 = 3.6 28.5 - 2.7.2 = 1.3 30.2 - 23.8 = 6.4 29.9 - 18.2 = 11.7 

43.7 - 55.1 = -11.4  

 

The sum of the squared differences: 

12.96 + 1.69 + 40.96 + 136.89 + 129.96 = 322.46 

The gamma for the sixth lag distance is: 

(6)= 322.46/(2*5) = 32.25 
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Graphing the Semivariogram 

Summary of the east-west directional semivariogram calculations for the data 

represented in Figures 1 and 2: 

Interval of h Number of Pairs (h) 

1 20 87.25 

2 20 137.57 

3 15 137.26 

4 12 142.23 

5 8 85.04 

6 5 32.25 

 

The similarity measurements are plotted with the x-axis being the lag 

distance (h), and the y-axis being(h). These values are plotted in the 

semivariogram shown in Figure 3. A line is fitted through the plotted points 

to assess the spatial correlation. The result is called the experimental 

variogram, or simply the variogram. The initial value of h is called the class 

size. In this example, the class size was selected to be the minimum sampling 

resolution of 1 kilometer.  

Figure 3: Characteristics of a semivariogram. 

Characteristics of the semivariogram 

The shape of the plot for the example semivariogram shown in Figure 3 is an 

ideal representation of the semivariogram observed for many regionalised 

phenomena and is known as a spherical semivariogram shape. A typical 

semivariogram has three characteristics – the sill, the range, and the nugget. 
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Sill 

When the distance between sample points is zero, the value at each point is 

compared with itself. Therefore, all the differences are zero, and the 

calculated semivariance for (0) should be zero. If h is a small distance, the 

points being compared tend to be very similar, and the semivariance will be a 

small value. As the distance h increases, the points being compared are less 

and less closely related to each other and their differences become larger, 

resulting in larger values of (h). In most cases involving environmental data, 

spatial variability between sample pairs increases as the separation distance 

increases. 

At some distance the points being compared are so far apart that they are not 

related to each other, and their squared differences become equal in 

magnitude to the variance around the average value. The semivariance no 

longer increases and the semivariogram develops a flat region called the sill. 

The sill indicates that there is no further correlation between pairs of 

samples. The higher the sill value, the higher the prediction variances. 

Range 

Essentially, the range is the sampling distance between points where the 

semivariance reaches its maximum point, called the sill. The distance at 

which the rising variogram reaches the sill is called the range of influence, or 

simply the range and is symbolized by A0. The range defines a neighborhood 

within which all locations are related to one another. At distances greater 

than the range, any two pairs of values are independent of each other. 

Samples that are separated by distances in excess of this range are said to be 

spatially independent (not correlated). 

The range signifies the distance beyond which sample data should not be 

considered in the interpolation process when selecting points that define a 

local neighborhood. The range can be used to identify patterns of spatial 

independence. A larger range means more continuous behavior, and the 

variable is very well correlated in space. Predictions result in fairly smooth 

maps of the variable of interest. The range typically tends to increase as more 

and better data become available. 

Nugget effect  

By extrapolating the plot of the semivariogram back to the origin (h = 0), the 

nugget value is found – the value of the semivariogram at a zero lag distance. 

This is called the nugget effect or nugget variance and is represented by C0.  

Ideally, the nugget effect should be zero as two samples from the same point 

should have the same value. If the intercept is greater than zero then a 

random or unstructured component of variation at h = 0 is present. Although 

(0) = 0 by definition, such a variogram is seldom obtained in practice. 

The nugget effect shows the apparent failure of the semivariogram to go 

through the origin, indicating a variable that is highly variable over distances 

less than the sampling interval. The nugget effect is related to the underlying 

characteristics of the spatial data and can have two components. The nugget 
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effect shows the pure random variation in population density (white noise) or 

it may be associated with errors in the sampling process. Analytical error, for 

example, will introduce some degree of uncertainty into the data. A nugget 

structure increases the variability uniformly across the entire graph because it 

is not related to distance or direction of separation. 

Species of North American birds censused on the breeding bird survey vary 

considerably in their nugget variances (Villard and Maurer, 1996). 

Temperate migrants tend to have higher nugget variances than Neotropical 

migrants, and species that use a number of different habitat types have higher 

nugget variances than species using a single type of habitat. 

For estimates of abundances obtained from censuses like the breeding bird 

survey, part of the nugget variance could be due to the inherent variability 

among observers in counting birds at different breeding bird survey routes. 

The second component is due to the discontinuous nature of the process in 

space. For birds, this would be related to the continuity of the habitat in 

which they were being counted. Since the habitat of a species is generally 

discontinuous in space, this is a likely component of the nugget variance for 

data like the breeding bird survey. 

Semivariogram Models 

There is an art to determining the correct variogram model to use. 

Semivariances are estimated at discrete values of h, whereas the true 

variogram is continuous. The estimates are subject to error, and unless a 

large sample is taken (several hundred points) the experimental variogram 

will appear erratic (as in our example variogram plotted in Figure 3). It is 

necessary to fit some kind of model to the sample values to represent the true 

variogram for a region. To consider the effect of the model on predictions, 

think in terms of the shape of the variogram for early lags – the better 

correlated the variable the smoother looking the resulting maps. There are 

only a few simple models that are appropriate to use.
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Linear 

The linear model describes a straight line variogram. The linear model 

applies when the spatial variability observed for a variable keeps increasing 

linearly with distance and never levels off. The range is defined arbitrarily to 

be the distance interval for the last lag class in the variogram. Because the 

range is an arbitrary value it should not be compared directly with the ranges 

of other models. There is no sill. The sill is the calculated semivariance for 

the arbitrarily defined range. The linear form indicates moderate continuity. 

 

The linear/sill model is similar to the linear model except that at some 

distance (the range), pairs of points will no longer be autocorrelated and 

the variogram will reach a sill. This model should not be used unless the 

variation is limited to one dimension (Webster, 1985). 

 

 

The horizontal form is produced by a random variable having no spatial 

autocorrelation. Horizontal variograms, are pure nugget, they indicate 

that there is no spatial dependence among the observations at the scale of 

sampling. Measurement errors, or sampling sites that are too far apart 

and thus spatially independent or both may lead to noisy semivariograms 

that appear as pure nugget effect. Choosing a pure nugget effect model is 

an extreme modeling decision that precludes usage of kriging. 

Spherical 

The spherical model shows a progressive decrease of spatial dependence 

of the variable when the distance between them decreases. The 

dependence fades away altogether when the model reaches a sill. The 

spherical model is a modified quadratic function for which at some 

distance (the range), pairs of points will no longer be autocorrelated and 

the semivariogram reaches a sill (becomes asymptote). The spherical 

model is a commonly used model. 
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Exponential 

The exponential model applies when the spatial dependence decreases 

exponentially with increasing distance; this dependence disappear 

completely only at infinite distance. The exponential model is similar to the 

spherical model in that it approaches the sill gradually, but different from the 

spherical model in the rate at which the sill is approached and in the fact that 

a definite sill is never actually achieved. The exponential model is a 

commonly used model. 

Gaussian 

The gaussian or hyperbolic model is similar to the exponential model but 

assumes a gradual rise for the y-intercept. The spatial dependence 

vanishes only at an infinite distance. The main feature of this model is its 

parabolic shape at the origin. It expresses a rather smooth spatial 

variation of the variables. The range in the gaussian model is not the 

range but rather a parameter used in the model to provide range. Range 

to 95% of the sill in the gaussian model can be estimated as 3 times the 

range. 

 

 

Hole Effect 

The hole effect variogram, also called the holesin model, suggests 

repetition in the variation that is neither wholly random nor periodic. 

Semivariograms from breeding bird survey data typically do not indicate 

the existence of an asymptotic maximum semivariance (Maurer 1994). 

Rather, they indicate that the maximum semivariance occurs at 

intermediate distances, and that points farther apart than this distance are 

actually more highly correlated. 

This increasing correlation with large distances separating sampling sites can 

be explained by the characteristic distribution of abundances across a 

geographic range. Generally a species is most abundant in one or a few 

places near the center of its geographic range, and its abundance decreases 

away from these points (Maurer and Villard, 1994). Abundances at points 

relatively large distances away from one another should be positively 

correlated because they represent peripheral sites in the geographic range.  

Abundance may be determined by a number of factors, each operating at a 

different scale. For example, large-scale patterns in climate variation across a 

continent may determine large-scale patterns of vegetation productivity, and 

consequently, variation in habitat for birds. Small-scale variation exists 

among sites located in the same biotic province, such as the physiographic 

regions used in the breeding bird survey. Sites that occur within the same 

physiographic regions, for example, might have abundances more similar 

than those that fall in different regions. 
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Alternate Variogram Analysis 

Alternate variograms to provide an estimate of spatial variability can be 

plotted. These alternate varigorams are sometimes less sensitive to outliers, 

skewed distributions, or clustered data than ordinary variograms and may 

help in the recognition of data structure when the ordinary variogram is too 

noisy. 

The relative variogram is analogous to the relative standard deviation often 

used to measure analytical variability. Relative variograms are unitless 

(decimal fraction squares). When modeled and used for kriging the relative 

kriging standard deviations must be multiplied by the estimated values to be 

comparable with kriging standard deviations produced with ordinary 

variogram models. 

The madogram calculates the mean absolute difference. Avoiding the 

squared term results in a more robust measure of the correlation structure. 

Madograms are not true variograms because they are not based upon squared 

differences. In general, kriging with madogram models is not recommended. 

The non-ergodic variogram is based on estimates of covariance rather than 

variance (Srivastiva, 1987). The non-ergodic variograms have the same units 

(measurement units squared) as ordinary variograms and may be modeled 

and used for kriging in the same way. 

Directional Calculations 

One purpose of the semivariogram calculation is to identify spatial 

correlation behavior that depends on direction (anisotropy). Once trends have 

been accounted for (or assumed not to exist), all other variation is assumed to 

be a function of distance. 

It is common to begin variogram modeling using the omnidirectional 

variogram. The omnidirectional variogram  pairs all samples to each other 

regardless of what direction they are oriented. To graph it requires specifying 

only two parameters: lag width and number of lags. 

The omnidirectional variogram is unaffected by the direction of values. It is 

therefore useful for exploring the overall continuity behavior of the sample 

data and the spatial dependency pattern of the measured surface. The 

omnidirectional sample variogram curve is also useful for detecting or 

confirming lag distance parameters that show a clear continuity pattern 

before calculating other variograms. 

Spatial continuity often varies with direction. The directional variogram is a 

form of exploratory data analysis based on the selection of sample pairs 

according to directional limits and tolerances. In practice, viewing many 

variograms is necessary to infer a spatial continuity structure. A collection of 

variograms best reveals the composite spatial continuity structure of the 

sample data. 

Typically, four variograms with different orientations are constructed. These 

orientations are usually E/W, NE/SW, N/S, and NW/SE. The directional 

convention used in geostatistics are E/W is 0 degrees, NE/SW is 45 degrees, 
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N/S is 90 degrees and NW/SE is -45 degrees (or 135 degrees). The direction 

component is set at one of these directions, plus or minus a deviation angle. 

Sometimes eight spatial directions analysis is used to yield more directional 

resolution. Large data sets are usually required to yield enough information 

for the eight directional calculations. 

If the directional variograms are reasonably similar, then the spatial 

correlation can be assumed to be isotropic in which case the variability 

between samples would be a function of distance only. If they are not the 

same, then the distribution is said to anisotropic – spatial correlation varies 

with direction and distance. In this case directional trends are important and 

this knowledge should be incorporated into monitoring design and analysis. 

Another type of anisotropy is zonal anisotropy, in which the ranges of 

semivariograms over all spatial directions are approximately the same, but 

the sill values are different. 

Two primary types of kriging exist. Ordinary kriging (simple kriging) 

assumes that the surface has a constant mean, no underlying trend and that all 

variation is statistical. Universal kriging is used if there is a gradual trend in 

the data. Universal kriging combines trend surface analysis with ordinary 

kriging (Bonham-Carter, 1994). Universal kriging is more difficult to apply, 

but  estimates are obtained in the same manner. 

The directional variograms are used to further explore and improve the 

emerging description of spatial continuity. Directional variograms should be 

examined with the intent of revealing the most information, not of making 

the best looking models. 

 

KRIGING 

If measurements have been made at scattered sampling points and the form 

of the semivariogram is known, it is possible to estimate the value of the 

surface at any unsampled location. 

Kriging uses the information from the semivariogram to find an optimal set 

of weights that are used in the estimation of the surface at unsampled 

locations. The kriging process involves the construction of a weighted 

moving average equation which is used to estimate the true value of a 

regionalised variable at specific locations. Since the semivariogram is a 

function of distance, the weights change according to the geographic 

arrangements of the samples. Kriging assigns low weights to distant samples 

and vice versa, but also takes into account the relative position of the 

samples to each other. 
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Calculating Kriging Weights2 

For the sake of simplicity, assume that the data in Figure 1 are associated 

with isotropic spatial correlation (no directional trend) and that the 

semivariogram in Figure 3 can be modeled using a spherical model. 

 (h) = C0 + C [1.5(h/A0) - 0.5(h/A0)3]  for h  A0 

 (h) = C0 + C     for h > A0 

where: 

  h = the lag distance interval 

  C0 = nugget variance 

  C = structural variance 

  A0 = range  

 

Example semivariogram model parameters: 

nugget (CO) = 20.0 

sill = 140.0 

structural variance (C) = 120 

range (A0) = 3.0 

 

(h) = 20.0 + 120.0 (1.5h/3 - 0.5h3/27), 0 < h < 3 

 (h) = 140.0, when h >= 3 

 (0) = 0 

 

An estimate can be made for the value of Z at the unsampled location 3,5 of 

Figure 1. To obtain this estimate, a decision is made to use six of the closest 

data locations, arbitrarily numbered 1 to 6. 

 

i X Y Z Distance (km) from location (3,5) 

1 2 6 15.7 1.414 

2 3 6 11.8 1 

3 1 5 28.5 2 

4 2 5 13.6 1 

5 5 5 35.4 2 

6 3 4 0.0 1 

 

The intersample covariance matrix must be calculated. This matrix is 

symmetrical, that is, covij(I,J) = covij(J,I). The distance between locations Xi 

and Xj is the same as between Xj and Xi. The intersample covariance matirix 

is diagonalized. Because the matrix is symmetric, only the entries for one 

side of the diagonal must be calculated explicitly. Entries for the other side 

can be filled by the symmetrical relationship. A few steps are required to 

obtain an estimate at location X = 3, Y = 5, from Figure 1. 

Step 1, calculation of distance to Xi to Xj for the computation of covariances. 

Because (0) = 0 , then value for each diagonal entry is zero. 

location (2,6) (3,6) (1,5) (2,5) (5,5) (3.4) 

(2,6) 0.000 1.000 1.414 1.000 3.162 2.236 

(3,6) 1.000 0.000 2.236 1.414 2.236 2.000 

(1,5) 1.414 2.236 0.000 1.000 4.000 2.236 

                                                           
2 The example calculation of the kriging weights has been adapted from Carr (1995). 
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(2,5) 1.000 1.414 1.000 0.000 3.000 1.414 

(5,5) 3.162 2.236 4.000 3.000 0.000 2.236 

(3,4) 2.236 2.000 2.236 1.414 2.236 0.000 

 

Step 2, using the spherical semivariogram model parameters as described 

above, the semivariogram (h) values are calculated for each of these 

coordinate pairs. For example, for the location pair of (2,6) (3,6): 

(h) =  20 + 120.0 (1.5(1)/3 - 0.5(13)/27) 

=  20 + 120 (0.5 - .0185185) 

=  20 + 120 (.4814815) 

=  20 + 57.77778 

=  77.77778 

and rounding to two decimals gives: (h) = 77.78. Each diagonal entry ij(I,I), 

is the semivariance for a zero lag distance, which is zero ((0) = 0). 

 

location (2,6) (3,6) (1,5) (2,5) (5,5) (3,4) 

(2,6) 0 77.78 98.56 77.78 140.00 129.32 

(3,6) 77.78 0 129.32 98.56 129.32 122.22 

(1,5) 98.56 129.32 0 77.78 140.00 129.32 

(2,5) 77.78 98.56 77.78 0 140.00 98.56 

(5,5) 140.00 129.32 140.00 140.00 0 129.32 

(3,4) 129.32 122.22 129.32 98.56 129.32 0 

 

Step 3, calculating the covariance: 

cov(hij) = sill - (hij)  

Because, the covariance of the zero lag distance is equal to the sill minus the 

semivariance, and the semivariance for a zero lag distance by definition is 0, 

each diagonal entry of the covariance matrix is equal to the sill value of the 

semivariogram. In this example the sill is 140.0. 

location (2,6) (3,6) (1,5) (2,5) (5,5) (3,4) 

(2,6) 140.00 62.22 41.44 62.22 0 10.68 

(3,6) 62.22 140.00 10.68 41.44 10.68 17.78 

(1,5) 41.44 10.68 140.00 62.22 0 10.68 

(2,5) 62.22 41.44 62.22 140.00 0 41.44 

(5,5) 0 10.68 0 0 140.00 10.68 

(3,4) 10.68 17.78 10.68 41.44 10.68 140.00 

 

These covariances are a function of distance between the six closest data 

locations and the estimation location. 

i X Y Z Distance (km) to 

Estimation Point 

Covariance 

1 2 6 15.7 1.414 41.44 

2 3 6 11.8 1 62.22 

3 1 5 28.5 2 17.78 

4 2 5 13.6 1 62.22 

5 5 5 35.4 2 17.78 

6 3 4 0 1 62.22 
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With all calculations required to assemble the matrix to solve for the kriging 

weights completed, the matrix is as follows: 

 

location (2,6) (3,6) (1,5) (2,5) (5,5) (3,4) Distance 

Covariance 

(2,6) 140.00 62.22 41.44 62.22 0 10.68 41.44 

(3,6) 62.22 140.00 10.68 41.44 10.68 17.78 62.22 

(1,5) 41.44 10.68 140.00 62.22 0 10.68 17.78 

(2,5) 62.22 41.44 62.22 140.00 0 41.44 62.22 

(5,5) 0 10.68 0 0 140.00 10.68 17.78 

(3,4) 10.68 17.78 10.68 41.44 10.68 140.00 62.22 

 

An extra row , and an extra column, are added. The additional row assures 

that kriging weights sum to 1. The additional column maps intersample 

covariances to point-sample covariances using the Langrangian multiplier. 

 

140.00 62.22 41.44 62.22 0 10.68 1 1  41.44 

62.22 140.00 10.68 41.44 10.68 17.78 1 2  62.22 

41.44 10.68 140.00 62.22 0 10.68 1 3  17.78 

62.22 41.44 62.22 140.00 0 41.44 1 4 = 62.22 

0 10.68 0 0 140.00 10.68 1 5  17.78 

10.68 17.78 10.68 41.44 10.68 140.00 1   62.22 

1 1 1 1 1 1 0   1 

 

Gaussian elimination, is used to solve for kriging weights. 

1  0.036 

2  0.316 

3  -0.039 

4 = 0.267 

5  0.090 

6  0.331 

 

Gaussian elimination is mathematical method to solve simultaneous 

equations. Simultaneous equations are two or more algebraic functions 

having a common solution. In Gaussian elimination, unknowns associated 

with simultaneous equations are determined by solving one of the equations 

for one of the unknowns, then substituting this solution into all remaining 

equations. This is done repeatedly until only one unknown remains, at which 

point it is solved. Then, using this solution, other unknowns are solved 

through back calculation. A detailed discussion of Gaussian elimination is 

beyond the scope of this report. A good example of solving linear equations 

by Gaussian elimination is described by Calter (1990), pages 304 - 306. 

 

In the example, solve for: 

Z(3,5) = (1)*Z(2,6) + (2)*Z(3,6) + (3)*Z(1,5) + (4)*Z(2,5) + (5)*Z(5,5) + (6)*Z(3,4) 
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An estimate for Z(3,5) is computed: 

Z(3,5) = 0.036*15.7 + 0.316*11.8 - 0.039*38.5 + 0.267*13.6 + 0.090*35.4 + 0.331*0 = 

9.6 

 

 

The Exact Interpolation Characteristics of Kriging3 

If the interpolation algorithm adjusts the interpolated grid so that the 

interpolated surface agrees with the original data values, it is called an exact 

interpolator. If the algorithm does not force the grid to honor the original 

data points, it is called an inexact interpolator. 

Choosing an exact interpolator over an inexact interpolator is a matter of 

philosophy not mathematics. If the data is believed to have random error or 

uncertainty, use an inexact interpolator. If the data is believed to be 

absolutely accurate and precise, and would be identical upon replication, use 

and exact interpolator. In a sense, using inexact interpolation shows a 

mistrust of the data; using an exact interpolation shows a mistrust of the 

algorithm. Your choice. 

Kriging is an exact interpolator. The values of known data points are never 

altered and their location is never changed. Should a known data point fall 

exactly on a location in the target matrix, that value will be present in the 

final matrix. Most often the coordinates of few, if any data values, match the 

coordinates of an element in the target matrix. In that case all or nearly all 

values are estimated. 

To accept that kriging is an exact interpolator you have to assume that there 

is no measurement error (replicate measurements) and that any sharp 

discontinuity at the origin (the nugget effect) is caused by small scale 

variations that cannot be resolved by the sample spacing. 

To demonstrate the exact interpolation characteristics of kriging, we can use 

our example, an estimate can be made at the location (2,6) which coincides 

with a sample location having the data value of 15.7. In this case, using the 

seven closest data locations for estimation, including the location (2,6), the 

matrix system for kriging is as follows, using the semivariogram model: 

 

 

 

 

 

140.00 41.44 62.22 41.44 62.22 62.22 41.44 1 1  140.00 

41.44 140.00 62.22 17.78 10.68 10.68 17.78 1 2  41.44 

62.22 62.22 140.00 62.22 41.44 17.78 10.68 1 3  62.22 

41.44 17.78 62.22 140.00 62.22 10.68 0.58 1 4  41.44 

62.22 10.68 41.44 52.22 140.00 41.44 10.68 1 5 = 62.22 

62.22 10.68 17.78 10.68 41.44 140.00 62.22 1 6  62.22 

                                                           
3 The example exact interpolation calculations have been adapted from Carr (1995). 
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41.44 17.78 10.68 0.58 10.68 62.22 140 1 7  62.22 

1 1 1 1 1  1 0   1 

 

Gaussian elimination is once again used to solved for the kriging weights 

yielding:  

1  1 

2  0 

3 = 0 

4  0 

5  0 

6  0 

 

Using these weights for estimation, of course, yields an estimate exactly 

equal to the data value at the sample location, which coincides with the 

estimation location. 

Punctual and Block Kriging 

In the example calculation, the estimate of the regionalised variable obtained 

from kriging is a point, or punctual estimate. The estimate is valid only for 

the discrete point. A map drawn from punctual estimates is often regarded as 

the best that can be made because the interpolated surface passes through the 

data. In the presence of a nugget variance, however, there will be local 

discontinuities at the sampling points. These can obscure the spatially 

dependent variation.  

A significant problem with punctual kriging is that it will not work unless the 

variable being mapped is stationary. In the presence of a trend a linear 

estimator is no longer unbiased. The computed estimates will be 

systematically shifted upwards or downwards from the true values depending 

upon the arrangements of the control points and the direction of dip of the 

surface. Punctual kriging is the most common method used in environmental 

engineering. 

In some estimation applications, an estimate is desired that represents the 

average value of Z over a definable area. In this case, the estimate is referred 

to as average, or block kriging. By computing block estimates, the nugget 

effect, which may be due either to measurement error or very short range 

variation can be avoided. The interpolated surface from block kriging is 

smoother, and the longer range variation can be detected more easily. 

Consequently block estimates appear more reliable than those for points. 

The choice of block versus punctual kriging should be made on the basis of 

sampling design and variate characteristics. If samples were taken to 

represent an area around the actual sample point (e.g. if soil samples from an 

area around the sampling coordinate were composited before analysis), then 

block kriging may be more appropriate than punctual. If samples were taken 

to represent point values in a field, or in time, then punctual kriging may be 

more appropriate. 

Block interpolation (Burgess and Webster 1980) may be more appropriate 

than punctual interpolation where average values of properties are more 
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meaningful than exact single-point values, especially where spatial or 

temporal dependence is weak. 

Block kriging is usually recommended for most environmental applications. 

Point kriging usually provides estimates very similar to those from block 

kriging, but if a point being estimated happens to coincide with a sampled 

location, the estimate is set equal to the sample value. 

KRIGING PARAMETERS 

Semivariograms are statistical measures that assume the input sample data 

are normally distributed and that local neighborhood means and standard 

deviations show no trends. Each sample data set must be assessed for 

conformity to these assumptions. Transformations of the data, editing of the 

data set, and the selection of different statistical estimators of spatial 

variability are all used to cope with data sets that diverge from the 

assumptions. 

Sampling and Measurement Error 

Knowledge of the sampling process along with the environmental processes 

influencing the sample attributes is critical to our interpretation of the 

characteristics of the data distribution. At the very least, saptial continuity 

detection is a tricky and time consuming process. Ancillary information and 

experience are the best guides for making inferences from the variogram. A 

good understanding of the underlying phenomenon and how it has been 

sampled is essential for effectively setting the parameters of the variogram 

model. 

Measurement error affects individual samples, and may affect all samples 

because of the quality of the measuring device used. Measurement error also 

may be proportionately systematic, and the samples approximation to the true 

value may increase as the measured value increases. A sampling scheme, on 

the other hand, may systematically under or over sample natural 

heterogeneities of the geospatial phenomenon if not well matched. The same 

issues of precision, bias, and randomness in sampling for statistics apply to 

geostatistics as well. 

Trends 

Trends in data sets should be minimal when making inferences about spatial 

continuity patterns. A tend in the data has the effect of either a small or large 

upward shift in the variogram. Strong trending suggests that the process 

affecting the data distribution is nonlinear or multivariate. The variogram 

may remain resistant and stable under strong trending while the effect in the 

covariogram can be terrible (Cressie, 1993). If the trend is not constant 

across distance, then the variogram is poor or unrepresentative. Therefore, 

the data may need to be detrended. 

When the local means and variability of the sample data are nonstationary, 

the first task is to identify the degree or pattern of the nonstationarity and 

decide whether to accommodate it. Does the nonstationarity disturb and 
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physically interfere with identifying the continuity structure? If 

nonstationarity intereacts with preferential clustering of data samples, then 

the variogram may be more sensitive. 

When trending occurs, preferably the source of the trend is known, which 

will help influence the decision on how to handle it. Trending occurs for 

measurement reasons, sampling design, or actual physical qualities of the 

sampled object. Climatic data may follow a strong directional pattern. 

Increasing rainfall from west to east leads inevitably to constantly increasing 

local means in the same direction. 

There are several quantitative management tools for trends. One possibility is 

to remove the trend component. The trend component can be subtracted from 

the samples before calculation of variogram measures and identification of 

the spatial continuity. The trend surface can be added back after kriging 

(Agterberg, 1974) or can be used as data input in universal kriging methods 

(Pebesma and Wesseling, 1998).  Despite criticisms that the detrended data 

ofted have a different covariance function or variogram from the original 

data, they do have the same generalized covariance function, a simplified 

component of the covariance function which is swamped by redundant 

variability imposed by a trend (Kitanidis, 1993). 

Co-Located Samples 

If the samples represent replicates of the same sample collected at the same 

time, an accepted practice is to average the samples and only include the 

average in the data set. If the sample represents a different element or a 

different time of collection an accepted practice is to change the location 

coordinates slightly. 

Spatial Outliers 

Detecting special features, characteristics, or abnormalities of the data set are 

the first steps of exploratory data analysis which will influence 

variability/continuity interpretations of the variogram. Such characteristics 

that potentially influence the interpretation of spatial continuity are the 

clustering of sample values, breaks in the data distribution, spatial or 

directional trends in the local means, or erratic values. It is important to 

identify and distinguish problems or characteristics of individual samples 

from the problems or characteristics of the sampling scheme overall. 

Special attention should be given to abnormal values appearing in the data 

set since these values will seriously distort the interpolation process. The 

best way to detect the abnormal values is to map or visually display the data 

set. Abnormal values will usually appear as spatial outliers. 

Map display also provides additional insights about the data set, how the 

samples are spatially distributed (uniform or clustered), their general pattern, 

trend and the extreme high or low values associated with the data set. The 

spatial location of extreme values is helpful in detecting erroneous data. An 

isolated extreme value may be suspicious, but this may not be sufficient to 

justify its removal. 
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Depending on the number of points that deviate from surrounding points by 

more than the usual variance suggests is reasonable, using a higher nugget 

effect, a larger search radius, or a larger number of points in the 

neighborhood may be preferable. 

Care should be taken before deciding that a given outlier is actually a bad 

data point. In some cases outlier values are obvious. There are a variety of 

methods that can be used to treat such a point, including inclusion, 

accommodation, replacement and rejection. The method to use depends on 

the objectives of the interpolation (depiction versus prediction; trend versus 

anomalies) and the nature of the data point. The decision to discard extreme 

values must be made with care, and data should be dismissed only if they are 

clearly wrong. 

It is possible to set a missing value indicator prior to surface generation in 

some software packages. Missing values are ignored during analyses. The 

missing value indicator can be set to a value such as -99. Some programs can 

set the missing values to permanent (blank data cells) or have the ability to 

mark some values as temporarily missing. 

Extreme Values 

When extreme values  or skewed distributions have an adverse impact on 

variogram calculations, they can be managed in several ways. Extreme 

values can be identified as errors and then eliminating them from the sample 

data set. The data set can be stratified by grouping extreme values together 

and treating them as a separate statistical population. The extreme values can 

be accepted, and their effect on the distribution can be mathematically 

moderated. 

There are two sets of mathematical methods. The first is to transform the 

data set before applying statistical measures. The other is to apply robust 

statistical measures that are better designed mathematically to reduce the 

effect of outliers or a small number of samples. 

Censored Data  

Censored data is data having a <, > or estimated qualifier, as is typical with 

water quality data. An accepted practice is to convert not detected (ND) 

values to one-half of the detection limit; to convert less than detection (<DL) 

values to the detection limit; and to convert estimated (E) values to the value 

estimated. 

Data Set Subdivision 

Sample data often represent a phenomenon with a wide range in attribute 

values. Spatial clusters or strings of large or small data values may reflect the 

presence of another process or event. A subset of samples may represent the 

natural clustering of small areas of high or low concentrations which may be 

a realistic component of the overall distribution. One could consider treating 

these values as belonging to another statistical population. 
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If certain values represent a significant spatial cluster, it may make sense to 

model their variograms separately by first separating the sample data into 

separate distributions before applying statistics. The decision to split the data 

into more homogeneous subsets should be based on physical considerations 

and the density of the available data. Each subset should have enough data to 

allow the reliable inference of statistics for each population. 

On the other hand, one may have to accept the realities of insufficient 

sampling if this is what accounts for the appearance of data clustering. If the 

data are indeed representative of the sampled process, removing or 

separating samples to improve the variogram does not make sense. One could 

instead remove the data pair that negatively impacts the calculation for a 

particular lag. In the h-scatterplot, the par will appear as an outlier. The 

solution, however, is not to remove the individual points. They have been 

paired with every other sample value too and hold useful information for 

other lags. 

Sample and Class Size 

Semivariogram calculation and interpretation is partly an art, and so the 

selection of sample and class size is somewhat arbitrary and subjective. 

Variograms computed from small samples almost always appear erratic, and 

in many instances the principal cause is too few data. It has been shown 

(Webster and Oliver, 1992) that variograms computed on fewer than 50 

sample points are of little value and that at least 100 data are needed. Their 

experiments suggest that for a normally distributed isotropic variable a 

variogram computed from a sample of 150 data might often be satisfactory, 

while one derived from 225 data will usually be reliable. 

A class size that is too large forces data pairs of widely varying separation 

distances into a single lag increment. A class size that is too small often 

results in a relatively few pairs contributing to any one lag increment 

resulting in a “noisy” semivariogram plot. Class size is selected by 

experimenting (increasing or decreasing the value) and noting its influence 

on the semivariogram plot.  

Optimally, a class size should be found where approximately the same 

number of pairs result for each lag increment. For some data sets, such a 

class size cannot be found due to sampling geometry. For these data sets a 

class size should be sought yielding an interpretable semivariogram (showing 

a clear sill value and range). 

It is common that the sill will be reached in less than 20 lags (Myers, 1997). 

Typically, a lag distance slightly less than the mean or median distance is 

sufficient for the initial detection of a structure. A recommended (Oliver, 

Webster and Gerrard, 1989) minimum of a hundred comparisons at the first 

lag, and following practice in the analysis of time series, suggest that 

estimates should be made for lag distances no more than a fifth of the entire 

transect for one dimension. In general, 30 to 50 data pairs is consider a 

practical minimum number of pairs for obtaining a reliable estimate of the 

variogram at any lag (Armstrong, 1984 and Russo, 1984). The goal is to find 

lag distances that generate a relatively smooth continuous structure. 

Typically variograms should generally be limited to a maximum distance 

equal to half the sampled distance. 
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The number of distinct pairs in a lag neighborhood ideally would be at least 

30 pairs. In statistics, this approximates the number of pairs needed to 

produce a normal distribution if drawing samples from a random distribution. 

Large tolerances can ensure large numbers of samples, but also may lead to 

unstable variograms that mask the continuity structure sought for a user-

specified direction. If the angular tolerance is set to 180 degrees when 

specifying a direction for neighborhood selection, this is in effect, plotting an 

omnidirectional variogram. 

While less of an issue for omnidirectional than directional variograms, 

checking the number of pairs that occur within each lag is necessary to judge 

whether a sufficient sample is present.  If the total sample is small, the lag 

division may affect the average of the variogram values significantly, 

producing erratic results. The advantage of the omnidriectional variogram is 

that it contains more sample pairs and more likely, the clearest “average” 

structure. If the structure of the variogram does not become evident, the lag 

distance parameters may be poor or there may be erratic pairs. Analysis of 

the data histogram and the exploration of h-scatterplots of each lag are some 

ways to explore and identify such problems. 

If a regionalized phenomenon is known or suspected to be composed of 

several components, each having a different range (in the semivariogram 

sense), use differing class size values to resolve the spatial correlation of 

each component. If data are irregularly spaced or clustered, it may be 

necessary to set irregular width lag intervals. In this situation, a suggestion is 

to use lags with small separation distances at short distances and use lags 

with increasingly larger separation distances at longer distances. Changing 

the width of each lag may help improve detection of continuity. 

Lag  and Direction Tolerance 

The distance between data pairs for the variogram are, in actuality, 

imprecise. Variogram values represent averages based on bounded separation 

distances (a range of distances) between samples limited by directional 

tolerances (or a range of directions). 

If the data are irregularly spaced, there is no way to get pairs of values 

exactly 1 kilometer apart or exactly 2 kilometers apart. Normally the lag 

tolerance is defined to be half the lag increment used. For a lag increment of 

1 kilometer, the lag tolerance would be  500 meters. Use all pairs separated 

1 kilometer  500 meters apart. This ensures that there will be enough pairs 

for a particular lag distance. When the variogram is plotted, the lag distance 

will be the average of all the distances between pairs falling within that 

tolerance, so it wouldn’t be 1 kilometer. The bigger the tolerance, the more 

pairs that can be defined, and the smoother looking the variogram. The 

smaller the tolerance, the fewer the number of pairs and the less smooth the 

variogram will appear. 
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Directional variograms analysis required additional 

lag parameters as well. Lag interval only separate 

samples by their separation distance. 

Distinguishing pairs by their separation in a 

particular direction narrows the selection process 

even further. In the same way that a distance 

interval is used to set a range of distances for a lag, 

an angular tolerance, and in some software a 

bandwidth are used for setting a range of angles. 

By defining a tolerance for the direction, 

directional variograms can be calculated. 

Normally, an azimuth or direction to analyze is 

chosen, (for example, 45 degrees). Then all pairs 

in this direction, plus some tolerance on either side 

of the azimuth (for example, 22.5o) are taken and 

the variogram calculated. An angular tolerance is 

the range of angles for grouping data pairs on 

either side of the specified direction. So 22.5o on either side of 47o , for 

example, constitutes an angular range from 24.5o  to 69.5o , or a total of 45o  

A tolerance of 90 degrees means an omnidirectional variogram, regardless of 

azimuth. The bigger the tolerance, the more pairs obtained. 

Directional tolerance must be chosen carefully and the process of iteratively 

examining the h-scatterplots at different lag widths or angular tolerances is 

essential. Using wide tolerance angles can over generalize by incorporating 

more pairs. This is especially true when anisotropy is extreme. 

Projection and Coordinate System 

Sample data collected over large areal extents can pose challenges because 

measuring distances across large areas will cause problems in variogram 

reliability. A latitude/longitude coordinate reference system is not suitable. 

Ultimately, separation distances should be calculated using spherical 

distances for large areal expanses. A Lambert Conformal Conic projection 

can be used to reduce errors in distance calculation, but this may still create 

problems for the largest separation distances. Another option would be to 

break the sample data into separate smaller sections and to project each 

independently to reduce distortions. 

Nugget Effect 

The relative nugget effect tends to increase with the lag tolerance and with 

data scarcity. Typically, the relative nugget effect decreases as more and 

better data become available. The way in which the sample variogram 

behaves at near zero separation distances is critical in describing the spatial 

continuity. 

A smoothing effect may be obtained by increasing the nugget, while leaving 

the total sill and the range the same. Consequently the ratio of the nugget 

effect C0 to total sill C0 + C increases. The effect is that points close to the 

grid node get a relatively lesser weight, whereas points farther away get 

relatively higher weight. The extreme would be to weight all points equally 

(pure nugget effect model). 
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Local scale variability in some sample data, like soil attributes, may create a 

natural nugget effect that should be modeled. While behavior of the sample 

variogram at shorter lag distances is hard to view because of fewer samples 

at close distances, it is one of the most important areas to accurately identify. 

Sometimes, sample pairs at relatively long separation distances are grouped 

with relatively shorter distance pairs and this creates an artificial nugget 

effect. Whether caused by sampling “noise” or true variability, nugget effects 

must be assessed carefully. 

Search Neighborhood 

Kriging seldom uses all of the sampled data. The more data is used in 

kriging, the bigger the matrix that would have to be inverted, and the more 

time consuming the kriging process. Using a search neighborhood, limits our 

estimates to just the data within some predefined radius of our point of 

estimation. This is called the search radius. The search radius does not need 

to be a circle or a sphere. To account for possible anistropies in the data the 

search radius can be elliptical or ellipsoidal (in 3D) 

In some cases it is beneficial to use all of the data. This results in a unique 

neighborhood (all the data is used, for example, if the number of samples is 

less than 100). The advantage is that the kriging matrix is inverted only one. 

For more than 100 samples, it is recommended to use a plain search 

neighborhood. For kriging with finite ranges, sparse matrix techniques can 

also be used with a unique neighborhood and with a lot of data without 

excessive computer cost. For kriging without finite ranges, search 

neighborhoods would still be required. 

Also implicit in the use of the search neighborhood is that we are assuming 

stationarity only within the search window (quasi-stationarity). For example, 

this can be useful if there is a trend in the data. By assuming a small enough 

search window, such a trend component can be ignored in the estimation. 

Variogram Model 

If a smoother variogram model is used, map details are smoothed further 

(Davis, 1986). A smoother model can be a function of higher 

differentiability. For example, a Gaussian model as opposed to a spherical 

model with a steeper slope, or a model with a larger range or a higher nugget 

effect. It has been shown (Warnes, 1986) that the influence of changing 

variogram parameters on the kriged map is not drastic for the exponential 

variogram model but is substantial for the Gaussian model. 

Variance Cloud 

The variance cloud or variogram cloud is a graph of the variances for all 

individual pairs of point in an autocorrelation analysis. Each sample data 

point is matched with each and every other sample data point and produces a 

variogram value for each resulting pair. The result is displayed by locating 

variogram values according to their separation distance and direction (the 

separation vector). In the example, the cloud is specific to the first lag class 

of the isotropic variogram, and the mouse in on pair 4403, made up of data 

records 461 and 1427, which are separated by 14958.33 meters.  
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The variance cloud is particularly useful for discovering outliers that may 

inappropriately skew the average value for a lag class. The variance cloud is 

specific to both direction (isotropic or a specific anisotropic direction) and to 

a particular lag class. 

Variogram Map 

The variogram map or anisotropic semivariance surface provides a visual 

picture of semivariance in every compass direction. The variogram surface is 

a representation of statistical space based on the variogram cloud. 

A transect in any single direction (e.g. 43 degrees) is equivalent to the 

variogram in that direction. The surface (z-axis) is semivariance; the x and y 

axes are separation distances in E-W and N-S directions, respectivley. The 

center of the graph corresponds to the origin of the variogram (h)=0 for 

every direction, from which  lag distances increase outwardly in all 

directions. Each location on the graph represents an approximate average of 

the pairs’ semivariance for the set of pair separation distances and directions. 

 



Geostatistics 38 

The variogram map provide a visual guide to establishing the appropriate 

principal axis for defining the anisotropic variogram model. 

Data Transformations 

Sometimes the best representation of a regionalized variable cannot be 

obtained by using the original data units. If the data are positively skewed, as 

is common with contamination concentrations, a logarithmic transformation 

of the data is generally beneficial. The purpose of data transformation is to 

moderate or reduce the effects of imperfect distributions in the data. A 

lognormal tranformation can reduce the erratic behavior of variogram models 

and make the continuity structure more apparent. 

Statistical evaluation is to understand statistical properties associated with 

the data. These properties may include distribution, location, spread, and 

shape of the data set. There are many tools available in the univariate 

description statistics which can be used to describe these properties. For 

example, the frequency table and corresponding histogram can be used to 

describe how often observed values fall within certain intervals or classes. 

Probability plots can be used to determine how close the distribution of the 

data set is to a Gaussian or normal distribution. 

Summary statistics provide a valuable summary of information contained in 

the histogram. It includes three groups: measures of location, measures of 

spread, and measures of shape. 
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Measures of location describe where various parts of 

the distribution lie. The center of distribution is 

described by the mean, the median, and mode. The 

location of other parts of the distribution are given by 

various quantiles. Measures of spread describe the 

variability. This group includes the variance, the 

deviation and the interquartile range. Measures of 

shape include coefficient of skewness and coefficient 

of variation. 

Skewness measures the degree to which a distribution 

is asymmetric. If a distribution's mean and median do 

not coincide, the distribution is skewed. If the 

distribution's mean is greater than (to the right of) the 

median, the distribution is said to be skewed to the right. The tail of the 

distribution points to the right, and the mound of data is on the left. This is 

referred to as positive skew. The opposite is referred to as a negative skew. 

For a symmetric distribution, the skewness is zero. A simple formula for 

skewness is skewness = (mean - median ) / standard deviation. 

Kurtosis is another measure of a 

distribution's departure from 

normality. A distribution may have no 

skew - that is, may be symmetrical - 

yet still not be normal. Kurtosis 

measures how flat or peaked the 

distribution is. Or stated in another 

way, kurtosis measures how thin or thick the tails of the distribution are. 

Distributions that have thicker than normal tails are referred to as leptokurtic 

(kurtosis is greater than 3). Distributions with thinner than normal tails are 

platykurtic (kurtosis is less than 3). Distributions with normal tails are 

mesokurtic (kurtosis is 3). The two distributions illustrated here have the 

same variance, approximately the same skew, but differ markedly in kurtosis. 

The computer can generate measures of skewness and kurtosis, as well as 

standard errors for them. Simply divide the skew (or kurtosis) figure by the 

standard error of the skew (kurtosis). Interpret the result like a Z score. That 

is, if it is greater than 1.96 or less than -1.96 (for alpha = .05), the data is 

significantly skewed (kurtotic). 

There is no requirement for data to be normally distributed for use in the 

computation of semivariograms, or predictions mad by kriging. However 

kriging is a linear estimator and is sensitive to a few large samples, which 

may bias the results. Notably, the variogram may become unstructured, close 

to a pure nugget effect. Normality is rare in mining and environmental data. 

Whether a distribution is normal, log-normal, or something else has no 

particular geostatistical significance. However, it is often more difficult to 

interpret variograms for highly skewed distributions such as the log-normal, 

and in such cases it may be useful to also compute variograms on log-

transformed data. 

Unfortunately, there are consequences of data transformation. The problem 

lies in the back-transform of results. For square root or logarithmic 

transforms, the back-transform through squaring or exponentiation tends to 

Summary Statistics

mean 22.383 2.9600

Untransformed Transformed

10.822 0.6650

117.112 0.4423

0.00 0.000

55.10 4.009

36 (0) 36 (0)

std deviation

sample variance

minimum value

maximum value

n ( n missing )

frequency distibution

skewness ( se ) 0.73 (0.39) -2.39 (0.39)

kurtosis ( se ) 0.89 (0.77) 9.03 (0.77)  

Leptokurtic Platykurtic

Kurtosis = 1.25 Kurtosis = -1.23
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exaggerate any error associated with the interpolation. Such exaggerations of 

errors is most dramatic for extreme values. Skewed data may be transformed 

to a normal distribution by a non-linear transformation (i.e., logarithmic). 

However, when the data are back-transformed to real values, the unbiased 

property of the kriging estimates is lost. 

The appropriateness of data transformation should be made carefully and 

should call for more than a quick look at the shape of the sample histogram 

and the simple desire to make that sample histogram symmetric. 

Lognormal Kriging 

One reason for computing a histogram prior to geostatistical analysis is to 

identify the presence of unusual data values in the data set. In some cases 

measurement error, recording error, accidents, and so on, can result in 

unusual data values. Of course, unusual data values may be an inherent 

attribute of the phenomenon under study. Unusual data values have a 

detrimental influence on geostatistical analysis, especially on the 

computation of the semivariogram. For this reason, unusual data values must 

be identified and a decision must be made about how to treat them. 

Another reason for computing a histogram for spatial data, prior to 

geostatistical analysis, is to identify the most likely distribution of the data. 

For normally distributed data, kriging is the best linear, unbiased estimator 

for the data. Kriging errors are normally distributed, and kriging has 

minimum variance of estimation error. For distinctly non-normal data sets, 

kriging may still be used, but it is not necessarily the best linear, unbiased 

estimator. A data transformation may be considered for distinctly non-normal 

data sets if the deviation of the data set from a normal distribution is 

determined to be problematic for estimation. 

If the data distribution is not examined by a histogram prior to geostatistical 

analysis, severe errors may occur. The application of kriging to a strongly 

skewed data set will result in estimates whose distribution is more normal. In 

other words, the distribution of the estimates will not match that of the 

original data. 

For data associated with decidedly non-normal distributions, a data 

transformation should be considered. Transformation is necessary to make 

the distribution more symmetrical and to remove the trend in variance. In a 

log-normal distribution variance is proportional to the mean squared. Thus, 

in high-density areas, the variance is higher than in low density areas. After 

log-transformation the variance become uniform. 

Many environmental parameters are lognormally distributed, and in such 

cases, lognormal kriging will often be useful. Lognormal kriging is a general 

term for kriging with the logarithms of the data. Lognormal kriging is 

performed in the same manner as simple and universal kriging, except that 

the logarithms of the data are used instead of the original data. The resulting 

estimates are thus expressed in logarithmic units. To obtain estimates in the 

original units, the transformation must be reversed, and both the logarithmic 

estimate and variance are needed to transform the estimate back to the 

original units. 
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When a transformation is chosen, after analysis of the transformed data the 

output data are customarily (but not necessarily) back-transformed to the 

original data domain. Three potential backtransformations are none, exp(z), 

or weighted. If zero values are present, use transformation: log(N+1). Offset 

values are subtracted from the backtransformed values. The weighted 

backtransformation is a complex backtransformation that more closely 

approximates true population statistics than simple backtransformations. 

(Haan, 1977 and Krige, 1981). 

Kriging a log-transformed variable does introduce a bias. Simply kriging a 

log-transformed data set would introduce a bias, because in the kriging, 

we’re assuming that the prediction is the mode/mean/median of our 

minimized error distribution. But, by transforming the transformed value 

back to its original value, it wouldn’t correspond to the mean anymore 

(probably near the median)! Therein lies the bias. 

The lognormal transform is referred to as a “sledgehammer” approach to data 

(Myers, 1997). It can reduce significantly or even eliminate true distribution 

characteristics of the data. It is also believed that log transforming data often 

goes too far, especially if data are not lognormally distributed originally 

(Cressie and Hawkins, 1980). They propose adjusting variability measures 

instead. Specifically, they propose a robust variogram estimator as a way of 

including extreme values while lessening their impact. 

Indicator Kriging 

Indicator kriging is the ordinary kriging of indicators. Instead of kriging 

continuous variables, indicator (binary) variables are kriged. These variables 

take a value of 0 or 1. The 0's may represent values below a cut off, and the 

1's represent values above a cut off. The resulting variogram of these 0's and 

1's is the indicator variogram. An advantage of the indicator transform 

involves minimizing the influence of outliers or to contend with skewed 

distributions. 

These values can be viewed as probabilities of occurrence, with a higher 

value denoting a higher probability or vice versa. An indicator is like a 

threshold value. The final result of indicator kriging is a set of probabilities 

that a grid cell exceeds a specific set of cut-off values with the values ranging 

between 0 and 1. This method is especially useful when a decision will be 

made based on a specific cutoff, or if the probability of exceeding some 

threshold is the final use of the interpolated data. 

The indicator variogram is calculated on the transformed data samples. The 

result for each lag is a direct measure of how often paired samples separated 

by vector h have different attributes. The ranges and shapes of the directional 

indicator variograms reflect the spatial continuity patter for the specified 

threshold.  

Although sampling error is not taken into account, the indicator transform 

can improve estimation of spatial continuity parameters in two ways. By 

reducing the scale of variogram, the behavior of sample variograms 

frequently improves. Only the position of the threshold value relative to each 

data point is considered in the summary statistics produced for each lag. 
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Being an arithmetic average, kriging can be drastically affected by even a 

single outlier. Deleting outliers is one approach to dealing with unusual 

values, but this may not be desirable because data are thrown away. 

Alternatively an indicator transform may be applied to the data, because no 

matter how unusual the data values are, they are transformed to either 0 or 1. 

Since the indicators are 0 or 1, the indicator variogram is very well behaved 

and resistant to outliers. Indicator variograms have a linear relationship 

(Lemmar, 1985). 

When the threshold level does not correspond well with continuity structure 

(when a skewed proportion of the data fall into one level relative to the 

other), the indicator variogram will not produce good results. Experience 

(Myers, 1997) shows transforming the data into indicators using the median 

of the distribution as the threshold can provide a variogram revealing the 

approximate description of variability, which at times is a reasonable 

approximation. 

When successful, the indicator transform potentially improves the overall 

estimation of continuity structure, and ultimately, the fit of the model 

selected for interpolation. While indicator variograms allow one to visualize 

the spatial continuity structure of different strata of data, it is also possible to 

customize the kriging interpolation to multiple strata. The kriging process 

can provide an independent summary of the statistical consistency of each 

spatial continuity model’s fit to each stratum of data. 

Co-Kriging 

When studying two or more regionalized variables which are correlated with 

each other, a technique called co-kriging can be used. Co-kriging, uses one 

set of data to help explain and improve the description of variability in 

another. Co-kriging assumes that the second data set is highly correlated with 

the primary data set to be interpolated. 

For example, when interpolating a rainfall surface from point rainfall data, 

incorporating a highly correlated variable such as elevation could help 

improve the estimation of rainfall. In such a case where the correlation is 

known, sampled elevation data could be used to help in the prediction of a 

rainfall surface, especially where rainfall sampling is space. In this case co-

kriging can be attempted. To perform cokriging, we need to model not only 

the variograms of the secondary and primary data, but also the cross-

variograms between the primary and secondary data. 

Probability kriging or co-kriging is a more sophisticated version of indicator 

kriging. Whereas indicator kriging uses only information from the indicator 

values, probability kriging uses the additional piece of information about the 

distribution. The regionalized variables are sorted by increasing value and 

assigned their cumulative frequency. This is referred to as the rank order 

transform. The conditional distribution function is then estimated. 

The weights are determined by the geostatistical technique called co-kriging. 

The use of co-kriging requires the variogram of the indicator variable, the 

variogram of the rank order transform variable and the cross variogram 

between the indicator and transformed variable. Since the co-kriging must be 

done for a discrete number of cutoffs, there are a large number of variograms 

required to implement probability kriging. If ten cutoff values are used, then 
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twenty-one variograms are necessary. Since probability kriging uses 

additional information it should theoretically produce better estimates than 

indicator kriging. (Knudsen, 1987). 

Cross-Validation 

Cross-validation is used to compare the impact of different models on 

interpolation results. In cross-validation, a variogram model and a search 

neighborhood are specified. Data values are then kriged at each sampled 

location, assuming that particular sample is missing. Then the kriged values 

and the true values are compared. The difference between these two values is 

called the cross-validated residual. Cross-validation techniques can be used 

to evaluate the impact of different kriging parameters on the interpolation 

results. 

Before proceeding with correlation analysis it is often useful to examine the 

graphical representation of the data. The plot of the measurements of one 

variable against the corresponding measurements of the second variable will 

result in a scatter diagram. The smaller the dispersion of the points in the 

diagram, the more closely the variables are related. The shape of the pattern 

indicates the nature of the relationship. If the shape is a straight line, the 

relation is said to be linear. 

If all estimated values are the same 

as the true value the scatter plot 

would be a 45-degree straight line. 

The distance each point is from the 

45 degree line is the estimation 

error for that sample value. The 

closer the cloud of points are to this 

line, the better the estimation. In 

addition, the correlation coefficient 

can also be used as a reliable index 

for measuring how close the 

interpolated values are to the true 

values. 

Ideally, points should plot close to a 45-degree line passing through the 

origin. Systematic deviations from the line indicate lack-of-fit with the 

model. Individual points deviating from the line may be considered outliers. 

These residuals can be used to assess the performance of the model 

assumptions. Is the variogram model appropriate? Is the search neighborhood 

the right size? Is the data being over- or under-estimated? Is a trend model 

using universal kriging appropriate? Are prediction errors comparable? Cross 

validation is used to evaluate inconsistencies, and to ultimately decide 

whether to modify or reject the model, not to evaluate prediction accuracy. 

Cross-validation does not prove that the variogram model is correct, merely 

that it is not altogether incorrect. 

Correlation Analysis 

Correlation analysis is used to determine the manner in which one (an 

independent) variable affects another (dependent variable). In correlation 
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analysis, the coefficient of correlation, coefficient of determination, and 

standard error of estimate provide assessments of the reliability. 

Coefficient of Correlation  

Correlation is the linear association between two random variables X and Y. 

It is usually measured by a correlation coefficient, such as Pearson's r, such 

that the value of the coefficient ranges from -1 to 1. A positive value of r 

means that the association is positive. If X increases, the value of Y tends to 

increase linearly, and if X decreases, the value of Y tends to decrease 

linearly. A negative value of r means that the association is negative. The 

larger r is in absolute value, the stronger the linear association between X 

and Y. If r is 0, X and Y are said to be uncorrelated, with no linear 

association between X and Y. Independent variables are always uncorrelated, 

but uncorrelated variables need not be independent. 

A value reasonably close to +1 or -1 can occur even though the scatter plot 

has a much more pronounced curve than linear pattern, because a curve often 

can be well approximated by a straight line over a wide range of value. A 

zero correlation does not necessarily mean there is no relationship between X 

and Y. It means there is no linear relationship. It is always a good idea to 

have a scatter plot available to help with the interpretation.  

Deciding if r is "good enough" is an interpretive skill developed through 

experience. As a rule of thumb, if r> 0.95, there is good evidence for positive 

linear correlation, if r< -0.95, there is good evidence for negative linear 

correlation, and if -0.95 < r< 0.95, the data is either not linear, or "noisy". As 

an informal rule of thumb, call the relationship strong is r is greater than +0.8 

or less than (more negative than) -0.8, weak if r is between -0.5 and 0.5, and 

moderate otherwise. 

Correlation (Pearson’s or any other) measures the extent of association, but 

association does not imply causation. If frequently happens that two 

variables are highly correlated not because one is causally related to the other 

but because they are both strongly related to a third variable. 

Coefficient of Determination 

In a simple correlation, the proportion of the variation of the dependent 

variable that is explained by the linear regression equation is the coefficient 

of determination r2, which is the square of the correlation coefficient r.  

The coefficient of determination is a measure of the proportion of the 

variance of the dependent variable that is explained by the regression 

equation. If the coefficient of determination r2 = .399, then 39.9% of the 

variance in the dependent variable is explainable by the variance in the 

independent variable. The better the fit, the larger the r2. A correlation 

coefficient of one (perfect correlation) is rarely, if ever, achieved. R2 should 

be at least 0.6 and preferably between 0.8 and 1.0 for a reliable surface 

model. 

Standard Error of Estimate 

The standard deviation of the residuals (the difference between the observed 

and predicted values). The standard error of estimate (SE), the Root Mean 

Square Error is a measure of the variation of the points about the regression 
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line and is analogous to the standard deviation. However, the standard 

deviation measures the scatter about the arithmetical mean of a sample 

whereas the standard error of estimate measures the scatter of the dependent 

variable about the regression line. 

The size of the standard error of estimate provides a measure of the scatter of 

the observed data about the regression line. However, it does not indicate 

how much improvement has been obtained by estimating the dependent 

variable from the regression curve, rather than assuming it equal to the mean 

of the dependent variable. The standard deviation is a measure of the error in 

assuming the dependent variable equal to its mean value. The ratio of the 

square of the standard error of estimate to the square of the standard 

deviation or variance of the dependent variable provides an estimate of this 

improvement. The coefficient of correlation measures the effectiveness of 

the regression. 

If the standard error of estimate is equal to the standard deviation of the 

dependent variable, then the correlation coefficient is equal to zero. In this 

case the regression equation is no better for estimating the dependent 

variable than the mean of the dependent variable and in fact there is no 

correlation between the two variables. On the other hand, if the standard 

error of estimate is zero, then the correlation coefficient is equal to one. The 

regression equation therefore accounts for all the variance of the dependent 

variable and all the observed data will lie on the regression line. The standard 

error of estimate provides a measure of the closeness of the point to the curve 

relation, it does not show the degree of correlation. 

The standard error of estimate should be less than about 30% of the 

acceptable range for values predicted from the surface model. 

Measures of Autocorrelation 

Crop-yield and soil-electric conductivity data mapped as a grid data structure 

produces a data set that continuously describes a mapped variable. This type 

of data structure is radically different from point-samples data, as they fully 

capture the spatial relationships throughout an entire area. 

The analysis techniques for spatial dependency in such data involve a 

moving a “roving window” throughout the data grid. Map values for the 

center cell and its neighbors are retrieved from storage, and depending on the 

technique, the values are summarized. The window is then shifted over to the 

next cell, and the process is repeated until all map locations have been 

evaluated. Various methods are used to deal with incomplete windows that 

occur along map edges and areas of missing data. If two cells are close 

together and have similar values, then they’re considered spatially related; if 

their values are different, they’re considered unrelated or negatively related. 

Geary’s C and Moran’s I are the most frequently used measures for 

determining spatial autocorrelation in mapped data. 

Geary’s C compares the squared differences in values between the center cell 

and its adjacent neighbors to the overall difference based on the mean of all 

the values. If the adjacent differences are less , then there is a positive 

correlation. If the differences are more, then there is a negative correlation. 

And if the adjacent differences are about the same, then things are unrelated. 
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Moran’s I is a similar measure, but relates the product of the adjacent 

differences to the overall difference. The Moran's I statistic is similar in 

interpretation to the Pearson's Product Moment correlation statistic for 

independent samples in that both statistics range between -1.0 and 1.0 

depending on the degree and direction of correlation. 

The general interpretation of the Geary’s C and Moran’s I statistics can be 

summarized as follows: 

 

 

autocorrelation Moran’s I Geary’s C 

strong positive autocorrelation I > 0 0 < C < 1 

random distribution of values I = 0 C = 1 

strong negative autocorrelation I < 1 C > 1 

 

Practical Tips 

 state the objective of the modeling exercise in clear quantitative terms 

 select a sample size and a sample collection strategy that are consistent 

with the objectives 

 try to obtain a sample size of 100 data points or more 

 check for enough number of pairs at each lag distance (a minimum of 30 

to 50 pairs) 

 correct data errors 

 manage extreme values or remove outliers 

 possibly transform the data of skewed distributions (i.e, logarithmic 

transforms; indiator) 

 truncate at half the maximum lag distance to ensure enough pairs 

 use a larger lag tolerance to get more pairs and a smoother variogram 

 start with an omnidirectional variogram before proceeding with 

directional variograms 

 select an appropriate model that is appropriate for the data and the 

objectives 

 use other variogram measures to take into account lag means and 

variances 

 interpret the model to obtain the best reliable fit possible 

 understand the uncertainty and the precision of the predictions 

 make decisions that are sensible 
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 reevaluate the model with new data when environmental conditions 

change 

 

Developing the interpolated surface is an iterative process of testing different 

distance and sample pair inclusion parameters, exploring the removal of 

unusual values, visualizing results based on transformed data samples, and 

switching variogram estimators. The more that is learned about the data, the 

better judgement can be made about which adjustments are realistic and most 

effective in determining a continuity pattern. 

CONCLUSION 

For many years geographers have had to be content with the qualitative 

description of variables over the earth’s surface. Many techniques have been 

devised for interpolation and mapping of data. The natural properties of the 

earth’s surface seem to behave essentially as spatially dependent random 

variables. The theory of regionalised variables describes the kind of variation 

that is characteristic of many properties of the earth’s surface. All can be 

treated as spatially dependent random variables. Geostatistics is the practical 

application of this theory.  

Kriging is an advanced technique that relies heavily on statistical theory and 

computer processing. In principle, kriging is the ideal interpolator. An 

additional bonus is that the method yield estimates of the errors associated 

with each interpolation. 

Geostatistics has been around since the early part of the twentieth century, 

but only in the last few decades has it been applied to environmental studies. 

Since geostatistics has to potential to be a very useful tool for environmental 

research the technology will almost certainly become an essential part of the 

GIS tool kit in the beginning of the twenty-first century. 

The information presented herein was developed to provide a basis of 

knowledge for those interested in using kriging and geostatistics to either 

design or to analyze the data from environmental monitoring surveys. 

Hopefully no tears were shed during this learning process. 

Rather than simply seeking to produce a visually-pleasing interpolated 

surface,  geostatistics provides a large collection of tools for exploring and 

understanding the nature of a data set. The bottom line is, do the 

geostatistical tools produce useful results? “Useful” has to be decided by the 

user. Across a wide spectrum of applications the answer seems to be yes but 

in specific instances the answer may be not because of a lack of data, 

difficulty in estimating or modeling the variogram, the sensitivity of any 

linear estimator to unusual data values, etc. 

There are no “correct answers in geostatistics, only the opportunity to gain 

more knowledge about the data and the interopolated surface, and to improve 

on the surface model. 
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