
Charlie Macleod

Russell Brennan

ArcGIS Pro SDK for .NET

Understanding Feature Services,

a Guide for Developers

Agenda

• Feature Service Overview

• General Info

• Branch Versioning

• Editing Feature Services

• Special Considerations

• Please silence your cell phones

Feature service overview

Feature services

• Platform feature access

• Access via

- Web Browser

- Desktop

- Apps

• Branch versioning

• Distributed/disconnected editing via Sync

• Utility Networks

• Parcel Fabrics

Apps

Desktop

APIs

Feature services

• Contain layers and tables

• Allows query and edit of feature geometry and attributes.

• Queries and edits are made via REST requests

• Platform naming:

- web feature layers

- sometimes just web layers

- 1 web feature layer can have many sub layers

• Service naming:

- 1 feature service can have many layers

What types of data are supported?

• Data structures supported by all feature services

- Points

- Lines

- Polygons

- Relationship classes

- Attachments…

• Some feature services support more complex data

- Utility Network, Annotation, Dimensions (10.7)

- Parcel Fabric (coming soon)

- Future ?

What else is included?

• Layers from a feature service contain more than just the row data

- Renderer, symbols, etc.

- Editing templates

- Field visibility

- Definition queries

- Other layer properties…

Feature Service REST API

• Operations on Service:

• Operations on Layer:

• Service JSON (service resource)

• Layer JSON (layer resource)

https://< server >/server/rest/services/<service name>/FeatureServer/0?f=pjson

https://< server >/server/rest/services/TrueCurveTest/FeatureServer?f=pjson

https://grafton.esri.com/server/rest/services/TrueCurveTest/FeatureServer/0?f=pjson
https://server/rest/services/TrueCurveTest/FeatureServer?f=pjson
https://grafton.esri.com/server/rest/services/TrueCurveTest/FeatureServer/0?f=pjson
https://server/rest/services/TrueCurveTest/FeatureServer?f=pjson

How do you create a feature service?

• Publishing from Pro or ArcMap

• REST

- Upload SD files & making requests to publish

• Python API

• In Portals you can also:

- Upload a file geodatabase

- Upload an SD file

- Create from another service

- Create from a template

Using feature services in ArcGIS Pro

• Our goal is a seamless user experience

• Developers write code as though it were any other data source

- Supports objects you would expect in a geodatabase data source

- cursors, feature classes, dataset definitions, connection properties, etc.

• In general, code written for any data store will work for feature services

Basics - Creating connections

Demo

Creating Feature Service Layers in the Pro SDK

• ArcGIS.Desktop.Mapping:

- LayerFactory CreateLayer() overloads*

- Provide the service URI

- CreateLayer() returns:

- A GroupLayer if the end-point URI points to the service

- Contains a feature layer added for each layer defined on the service

- Adds any stand-alone tables for each table defined on the service

- A FeatureLayer if the end-point URI includes a layer id

*StandaloneTableFactory CreateTable() for non-spatial tables

Creating Feature Service Layers in the Pro SDK

• LayerFactory example:

var hosted = @"https://<server1>/server/rest/services/Hosted/Foo/FeatureServer";
var by_ref = @"https://<server1>/server/rest/services/Bar/FeatureServer";
var portal = @"https://<server2>/portal/home/item.html?id=GUID HERE";

await QueuedTask.Run(() => {
var groupLyr1 = LayerFactory.Instance.CreateLayer(

new Uri(hosted, UriKind.Absolute), MapView.Active.Map);

var groupLyr2 = LayerFactory.Instance.CreateLayer(
new Uri(by_ref, UriKind.Absolute), MapView.Active.Map);

var groupLyr3 = LayerFactory.Instance.CreateLayer(
new Uri(portal, UriKind.Absolute), MapView.Active.Map, 0);

Creating Feature Service Layers in the Pro SDK

• ArcGIS.Core.Data

- Connect to the Geodatabase via a ServiceConnectionProperties and the URI

- Retrieve the relevant feature class(es) or table(es)

- Use as the data source to LayerFactory or StandAloneTableFactory

//using ArcGIS.Core.Data

var url = @"https://<server1>/server/rest/services/Foo/FeatureServer";
await QueuedTask.Run(() => {

var svc_props = new ServiceConnectionProperties(new Uri(url, UriKind.Absolute));
var fs_db = new Geodatabase(svc_props);
var dataset_name = ...;
var fc = fs_db.OpenDataset<FeatureClass>(dataset_name);

var featlayer = LayerFactory.Instance.CreateFeatureLayer(fc, MapView.Active.Map, 0);

Basics - Creating connections

Demo

General information

Data Storage

Feature Service

JSON

Services
Architecture

ArcGIS Pro

Geodatabase

Feature Service Client

“Client”

“Server”
Enterprise, Online,
ArcGIS Server

Data Storage

Feature Service

Services
Architecture

ArcGIS Pro

Geodatabase

Feature Service Client

Editing, Mapping,
GeoProcessing, …

ArcGIS.Core.Data

Internal

REST
API

JSON

Internal

Common translations by the feature service client

Pro SDK API REST API

Search Cursor FeatureService Query

Insert or update cursor FeatureService ApplyEdits

EditOperation.Create > Execute FeatureService ApplyEdits

Open feature class FeatureService layer resource

Open datastore FeatureService server resource,

relationships resource, queryDomains

… many more

Technical details – feature class and layer naming

• Service has a layer which has an ID and a name

• Name is not unique for the service

• Internally we need the name to be:

- Parse-able for SQL queries

- Unique for the datastore

• Feature class name is L + layer ID + cleaned up name

- Allows internal SQL parsing

- Eg: L1Parcels, L217Highways, …

Technical details – functionality unique to Pro

• Caching

- Local copy of the data used for editing and querying

- Improves query performance

- Write through – updated as edits happen locally

• Pagination

- Gets records a page at a time

- All queries will return full result sets

Data storage options - hosted

Pro Web Collector

….

ArcGIS Online

Pro Web Collector

Enterprise

….

Server ArcGIS
Data Store

Data storage options – by reference

• Feature Services referencing an Enterprise

Geodatabase

- ArcGIS Enterprise (federated)

- ArcGIS Server (unfederated / stand alone)

• Only implementation to support:

- Versioning, utility networks, true curves, annotation,

dimensions, attribute rules, contingent attribute values

Pro Web Collector

….

Enterprise

Enterprise
Geodatabase

General Info

Demo

Branch versioning

Branch versioning – what is it?

• Mechanism behind long transactions in services

• Same types of versions

- Private - Only owner/admin can view or edit

- Protected - Everyone can view, Only owner/admin can edit

- Public - Everyone can view/edit

• Same basic workflows as before

- Make edits

- Reconcile

- Post

Version A Version B

Branch versioning – enhancements

• Timestamp based

• Conflict resolution over multiple sessions

• Enhanced editor tracking for deleted features

• Undo/redo with services

• No compress

Version A Version B

Branch versioning – special considerations

• Only versioning model for newer datasets

- Parcel fabric

- Utility network

• Only for by reference services not available for hosted services

• Only editable via feature service

• Single level of versions

- Ability to change ownership Version A Version B

More about versions and permissions

• Services can be secured or unsecured

- Secured – shared within your Organization or within your ArcGIS Server

- Unsecured – shared with everyone

• Feature service and version access based on the Portal user not DBMS user

- Due to version access it is recommended to use secured services

- Editor tracking comes from portal user

• Esri suggests using a protected version for the Default version

- Other users can create versions from it

- Allows QA by admin before data is posted

Preparing data for branch versioning

• Create tables, set up schema, load data

- Add global id’s

- Enable editor tracking

- Relationships cannot be OID based

• Make a branch version connection in Pro

• Register as branch versioned

• Publish to Enterprise ‘by reference’ feature service

• Enable version management capability

Preparing data for branch versioning

• Create tables, set up schema, load data

- Add global id’s

- Enable editor tracking

- Relationships cannot be OID based

• Make a branch version connection in Pro

• Register as branch versioned

• Publish to Enterprise ‘by reference’ feature service

• Enable version management capability

Preparing data for branch versioning

• Create tables, set up schema, load data

- Add global id’s

- Enable editor tracking

- Relationships cannot be OID based

• Make a branch version connection in Pro

• Register as branch versioned

• Publish to Enterprise ‘by reference’ feature service

• Enable version management capability

Preparing data for branch versioning

• Create tables, set up schema, load data

- Add global id’s

- Enable editor tracking

- Relationships cannot be OID based

• Make a branch version connection in Pro

• Register as branch versioned

• Publish to Enterprise ‘by reference’ feature service

• Enable version management capability

Preparing data for branch versioning

• Create tables, set up schema, load data

- Add global id’s

- Enable editor tracking

- Relationships cannot be OID based

• Make a branch version connection in Pro

• Register as branch versioned

• Publish to Enterprise ‘by reference’ feature service

• Enable version management capability

Preparing data for branch versioning

• Create tables, set up schema, load data

- Add global id’s

- Enable editor tracking

- Relationships cannot be OID based

• Make a branch version connection in Pro

• Register as branch versioned

• Publish to Enterprise ‘by reference’ feature service

• Enable version management capability

Preparing data for branch versioning

• Create tables, set up schema, load data

- Add global id’s

- Enable editor tracking

- Relationships cannot be OID based

• Make a branch version connection in Pro

• Register as branch versioned

• Publish to Enterprise ‘by reference’ feature service

• Enable version management capability (VMS)

Editing feature services

Feature service editing permissions

• Permissions

- Query, Insert, Update, Delete

- Service level, not on the individual layer

• Ownership based access control

- Unique to feature services

- Row level security based on editor tracking

Transaction model

• Feature Service only

No VMS

• Applies to all hosted services

- Short transactions, last in wins

• Applies to ‘by reference’ services

if VMS is not present

- Even when data is versioned

• No edit sessions

• Feature Service with

Version Management (VMS)

• Long transaction editing behavior

for Pro

- Create versions

- Edit in version

- Reconcile

- Review conflicts

- Post

- Delete version

VMS = version management server

Determining Editing Behavior

Check underlying GeodatabaseType and RegistrationType of the feature class:

*no undo/redo

GeodatabaseType RegistrationType Version EditOperationType Example

Service NonVersioned N/A SHORT Hosted or By Reference

Service Versioned Default LONG* Branch Versioned

Service Versioned Named LONG Branch Versioned

((Geodatabase)featLayer.GetFeatureClass().GetDatastore()).GetGeodatabaseType();

featLayer.GetFeatureClass()?.GetRegistrationType();

Edit Behavior

• Summary of characteristics by Long and Short type

GeodatabaseType RegistrationType CancelEdit Group Edits Undo/Redo Save/Discard

Service Versioned (Named) YES YES YES YES

Service Versioned (Default) YES YES NO NO

Service NonVersioned YES* NO NO NO

LONG SHORT *2.2 and earlier - Create cannot be canceled

Locking model – named version

• Editing in a named version is single editor, multiple viewer model

- One edit session at a time per version

• Connecting to version takes a shared lock

• Editing in a version takes an exclusive lock

- Starts edit session

- Cannot take exclusive when a second shared lock exists.

• Save or discard releases exclusive lock

- Stops edit session

• Releasing the data store releases shared lock.

Mixed mode editing

• "Mixed Mode" is the default in Pro

- Data from multiple datasources can be edited at the same time

- Contents pane may include data with "Short" and "Long" transaction semantics

- Long transactions go on the undo/redo stack

- Short transactions are committed immediately

- Can lead to inconsistent UI experience for Undo/Redo, Save/Discard when both

are edited together

Editing Feature Services

Demo

aka Tips and Tricks

Special considerations

Performance

• Counting rows

- Table.GetCount

• Calculating values

- use calculate field with SQL >>> uses REST API

• Bulk loading:

- Go to back end data for by ref

- Go to Append API if possible for hosted

• Beware of pagination

- Can appear like bad performance

Other considerations

• DDL via GP for hosted services

- Add field, delete field, add index, delete index are supported for hosted data

- More to come, let us know what you want!

• Rows can disappear when editing

- Was a definition query was applied when publishing?

- Are the service capabilities ‘insert only’?

• Read only feature access to map service sub layers is also available

Feature caching

• Turned on by default

• Multiple editor scenarios

- Non versioned: refresh map to see other’s edits

- Branch default: refresh version to see other’s edits

- Named version: single editor nobody else can edit

• User can disable for NonVersioned (no VMS) services

• Available for both map service and feature service

Offline feature services

• Ability added at 2.2

• When offline the layer data store changes to mobile geodatabase

- Feature class is accessible from feature layer not from data store

• No undo/redo (coming soon)

ArcGIS Pro SDK for .NET – Technical Sessions

Date Time Session Location

Thu, Mar 07

9:00 am – 10:00 am Understanding Feature Services, a Guide for Developers Primrose C-D

10:30 am - 11:30 am An Overview of the Utility Network Management API San Jacinto

1:00 pm – 2:00 pm An Overview of the Geodatabase API Mesquite G-H

5:30 pm - 6:30 pm
Advanced Pro Customization with focus on Categories and

Custom Settings
Smoketree A-E

Fri, Mar 08
8:30 am – 9:30 am

Advanced Editing with Focus on Edit Operations,

Transaction Types, and Events
Mesquite C

10:00 am - 11:00 am Demonstrating Pro Extensibility with Add-Ins Mesquite B

ArcGIS Pro – Road Ahead Session

Date Time Session Location

Thu, Mar 07 4:00 pm – 5:00 pm ArcGIS Pro: The Road Ahead Primrose B

Complete answers

and select “Submit”

Scroll down to find the

feedback section

Select the session

you attended

Download the Esri Events

app and find your event

Please Take Our Survey on the App

