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Summary. When predicting values for the measurement-error-free component of an observed spatial process, it is generally
assumed that the process has a common measurement error variance. However, it is often the case that each measurement in
a spatial data set has a known, site-specific measurement error variance, rendering the observed process nonstationary. We
present a simple approach for estimating the semivariogram of the unobservable measurement-error-free process using a bias
adjustment of the classical semivariogram formula. We then develop a new kriging predictor that filters the measurement
errors. For scenarios where each site’s measurement error variance is a function of the process of interest, we recommend an
approach that also uses a variance-stabilizing transformation. The properties of the heterogeneous variance measurement-
error-filtered kriging (HFK) predictor and variance-stabilized HFK predictor, and the improvement of these approaches over
standard measurement-error-filtered kriging are demonstrated using simulation. The approach is illustrated with climate
model output from the Hudson Strait area in northern Canada. In the illustration, locations with high or low measurement
error variances are appropriately down- or upweighted in the prediction of the underlying process, yielding a realistically
smooth picture of the phenomenon of interest.

Key words: Heterogeneous variance measurement-error-filtered kriging; HFK; NARCCAP; Spatial prediction; Spatial
smoothing.

1. Introduction
Spatial prediction based on properties of an observed spatial
process is commonly known as kriging (Matheron, 1963). The
early history of the development of kriging and geostatistics
generally is discussed in Cressie (1990).

In its simplest form, the ordinary kriging (OK) predictor
(see Cressie, 1993, Section 3.2) is an exact interpolator in
that the spatial prediction for an observed location is sim-
ply the observed value for that location. However, there is
often interest in predicting a measurement-error-free or fil-
tered version of the observed process. Such an approach has
been developed by Cressie (1993; Section 3.2.1) and further
discussed by Schabenberger and Gotway (2005; Section 5.4.3)
and Waller and Gotway (2004; Section 8.3.2). Measurement-
error-free or measurement-error-filtered kriging (FK) requires
that the measurement error variance is known and common
across spatial locations. The FK predictor will “smooth” the
observed measurements as it predicts the measurement-error-
free component of the data.

It is often the case, however, that each measurement in
a spatial data set has a measurement error variance that is
unique but known. For example, this may occur whenever
the spatial data are gathered using different measurement in-
struments with different measurement properties or when the
spatial data set is itself a collection of location-specific pa-
rameter estimates with varying standard errors. Kleijnen and
Van Beers (2005) use simulation to evaluate the properties of
kriging under the heterogeneous variance assumption. They

argue that OK is robust but conclude that optimal prediction
under the heterogeneous variance assumption is still an open
question.

As we later discuss in greater detail, the predominant chal-
lenge here is the nonstationarity of such an observed process.
The semivariogram/covariance functions for the data are not
estimable in the usual sense as in Cressie (1993, Section 2.4)
because although the measurement-error-free version of the
process may be stationary, the observed process is not. Hence,
the observed data are not amenable to direct geostatistical
modeling.

In this article, we present a simple approach for estimating
the semivariogram/covariance function for the unobservable,
measurement-error-free process and develop a new kriging
predictor that filters the heterogeneous measurement errors.
In Section 2, we consider spatial prediction in the presence
of measurement error, reviewing the OK and FK predictors
and introducing the heterogeneous variance measurement-
error-filtered kriging (HFK) predictor. In Section 3, we pro-
pose a modification of HFK based on the variance-stabilizing
transformation and trans-Gaussian kriging. This variance-
stabilized HFK (or VHFK) approach is necessary whenever
the observation process is correlated with the measurement
error variance process. A simulation study is presented in Sec-
tion 4 that illustrates the scenarios for which HFK and VHFK
are superior to both OK and a simple adaptation of FK. In
Section 5, we present a simple example using climate model
output for mean summer temperatures in the Hudson Strait
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in northern Canada. The final section contains discussion and
conclusions.

2. Spatial Prediction in the Presence of Measurement
Error

In this discussion, we consider an observable spatial process
Z(s), which is an error-contaminated version of the unobserv-
able process T (s). Specifically, our model of interest for the
observation at si is:

Z(si ) = T (si ) + ε(si ), (1)

where T (si ) is an intrinsically stationary spatial process with
semivariogram γT (si − sj ) = 1

2var{T (si ) − T (sj )} and ε(si ) is
a site-specific zero-mean error term with (known) variance of
σ2(si ), and cov{ε(si ), ε(si ′)} = 0 for si �= si ′ . Finally, T (si )
is uncorrelated with ε(si ). We have observations of Z(s) for
all locations in a sample D = {s1, . . . , sn}, where D ⊂ R

d .
In essence, the intrinsic stationarity implies that both the
mean and the nature of the spatial covariance remain constant
throughout the random field of interest, with no systematic
trends that would prevent the researcher from pooling infor-
mation across regions of the random field to better understand
spatial structure.

Spatial prediction (kriging) is traditionally considered to be
a method for spatial interpolation. However, when measure-
ment errors are known to contaminate the measured process
Z(s), there is often interest in predicting the smoother unob-
servable process T (s) at both observed and unobserved loca-
tions. In this sense, kriging can be used as a spatial smoother.
In this section, we consider traditional and newly proposed
methods for spatial prediction.

2.1 Ordinary Kriging
When it can be assumed that ε(si ) = 0 for all si (i.e., Z(si ) =
T (si )), the best linear unbiased predictor (BLUP) for T (s0)
(or Z(s0)) at location s0 given data Z = (Z(s1), . . . , Z(sn))′ is
the OK predictor ẐO K (s0) = λ′

O K Z, where the kriging coeffi-
cients (λOK ) are found using:[

λOK

mOK

]
=

[
Γ̂Z 1

1′ 0

]−1 [
γ̂Z,Z (s0)

1

]
, (2)

where 1 is an n-vector of ones, the (i, j) element of the n ×
n matrix Γ̂Z is γ̂Z (si − sj ), and γ̂Z (h) is the estimated semi-
variogram for Z(s) (Matheron, 1963; Cressie, 1990, 1993, Sec-
tion 3.2). The ith element of the vector γ̂Z,Z (s0) is technically
the cross-semivariogram of Z(si ) with Z(s0) and is calculated
using γ̂Z (si − s0) because of the stationarity of Z(s) when
ε(s) = 0. Note that the OK predictor is an exact interpolator
so that for any si ∈ D, ẐOK (si ) = Z(si ). The quantity mOK is
a Lagrange multiplier that ensures that the kriging weights
sum to one. The estimated kriging (prediction) variance for
ẐOK (s0) is

τ̂ 2
OK (s0) = λ′

OK γ̂Z,Z (s0) + mOK ,

which is equal to 0 when s0 ∈ D.

2.2 Measurement-Error-Filtered Kriging
When σ2(s) in (1) is a known measurement error variance σ2

for all s, then it is usually preferred to predict the value of
T (s), the uncontaminated component of Z(s) (Cressie, 1993,

Section 3.2.1; Waller and Gotway, 2004, Section 8.3.2; Sch-
abenberger and Gotway, 2005, Section 5.4.3). Because the
measurement error variance is common across sites, Z(s) re-
tains the intrinsic stationarity property of T (s) and prediction
of T (s) from Z is still relatively straightforward, with

γZ (h) =

{
γT(h) + σ2, h �= 0,

0, h = 0.

We note here that in general, the nugget effect in the semivari-
ogram for Z(s) is not equal to the measurement error variance
and should not be treated as such. In general, the nugget ef-
fect is equal to the sum of the measurement error variance
and the microscale variation (see Cressie, 1993, Section 3.1).
Treating the nugget of Z(s) as an estimate of σ2 will sys-
tematically yield predictions for T (s) that are oversmoothed
(Cressie, 1993, Section 3.2.1).

The FK predictor for T (s0) given Z is a BLUP that can
be written as T̂FK (s0) = λ′

FKZ, where the kriging coefficients
(λFK ) can be found using:[

λFK

ṁFK

]
=

[
Γ̂Z 1

1′ 0

]−1 [
γ̇Z,T (s0)

1

]
, (3)

where Γ̂Z is defined in Section 2.1 and the vector γ̇Z,T (s0) is
the cross-semivariogram of Z with T (s0). The ith element of
the γ̇Z,T (s0) can be calculated directly from the semivariogram
for Z(s) using

γ̇Z (si ),T (s0)(si − s0) =
1
2
v̂ar{Z(si ) − T (s0)}

=
1
2
v̂ar{T (si ) − T (s0)} +

1
2
var{ε(si )}

= γ̂T (si − s0) +
1
2
σ2

=

⎧⎨⎩γ̂Z (si − s0) −
1
2
σ2, si �= s0,

1
2
σ2, si = s0.

The estimated kriging variance for T̂FK (s0) is

τ̂ 2
FK (s0) = λ′

FK γ̇Z,T (s0) + ṁFK . (4)

However, note that the traditional FK formulas (Cressie,
1993, Section 3.2.1; Waller and Gotway, 2004, Section 8.3.2;
Schabenberger and Gotway, 2005, Section 5.4.3) are[

λFK

mFK

]
=

[
Γ̂Z 1

1′ 0

]−1 [
γ̂Z,T (s0)

1

]
, (5)

where the ith element of γ̂Z,T (s0) is

γ̂Z (si ),T (s0)(si − s0) =

{
γ̂Z (si − s0), si �= s0,

σ2, si = s0.

Notwithstanding the superficial differences between (3) and
(5), the standard BLUP-based predictor (3) is equivalent to
the conventional FK formula (5). This is particularly impor-
tant to note because we will use the former to develop a gen-
eral kriging predictor in Section 2.3 for use with heterogeneous
measurement error variances. The equivalence of (3) and (5)
is demonstrated in Web Appendix A.
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When predicting at previously measured locations in the
presence of a known, common measurement error variance at
each location, FK yields a smoother prediction and smaller
mean squared prediction error (MSPE) than OK (because OK
is an exact interpolator). When predicting at previously un-
measured locations, FK yields equivalent predictions to OK,
but with smaller prediction variance.

2.3 Heterogeneous Measurement-Error-Filtered Kriging
When the known measurement error variance σ2(si ) depends
upon the location si , the problem of predicting T (s0) is more
complicated. Whereas T (s) is an intrinsically stationary pro-
cess, Z(s) is not. Thus the semivariogram γZ (·) is not es-
timable in the usual sense (as in Cressie, 1993, Section 2.4)
because the assumption of stationarity is not met. (In Sec-
tion 4, we consider the further complication that the site-
specific measurement error variances are themselves only es-
timates of the true values σ2(si ). For the present development
of the new predictor, we assume that σ2(si ) is known.)

Notwithstanding the nonstationarity of Z(s), for the ap-
proach we consider here, we use the standard empirical semi-
variogram formula applied to Z(s) as a tool for estimating the
semivariogram for T (s). First, note that under the heteroge-
neous variance model (1),

E
{1

2
(Z(si ) − Z(sj ))2

}
=

1
2
E

{
[T (si ) − T (sj )

+ε(si ) − ε(sj )]2
}

= γT (si − sj )

+
σ2(si ) + σ2(sj )

2
,

where γT (si − sj ) is the semivariogram for the unobserved
process T (s). So,

E{γ̂Z (h)} = E

⎧⎨⎩ 1
2|N (h)|

∑
N (h)

(Z(si ) − Z(sj ))2

⎫⎬⎭
=

⎧⎨⎩ γT (h) +
1

2|N (h)|
∑
N (h)

(σ2(si ) + σ2(sj )), h �= 0,

0, h = 0,

(6)

where N (h) is the set of points (i, j) such that si − sj is
within some tolerance region T (h) ⊂ R

d centered at h, and
|N (h)| is the number of elements in N (h). The bias term

1
2|N (h)|

∑
N (h)

(σ2(si ) + σ2(sj ))

in (6) can be estimated directly for any value h. However,
this method-of-moments approach would require that |N (h)|
is large enough to yield a stable estimate of the bias for all
considered tolerance regions N (h). Fortunately, the bias can
be estimated with 1

n

∑n

�=1 σ2(s� ) for all h when the following
condition holds:

E
{1

2
(σ2(si )+σ2(sj )) | si −sj ∈ T (h)

}
=

1
n

n∑
�=1

σ2(s� ) for all h.

(7)

This condition states that the expected value of 1
2 (σ

2(si ) +
σ2(sj )) is simply the mean of the σ2(s) process, regardless of
the length or direction of the vector of separation between
the pair of points (si , sj ). The condition will be met when-
ever the large (and small) σ2(si ) values are spread throughout
the region of interest in R

d . However, the condition is quite
unrestrictive and would even hold for cases where high er-
ror variance observations are found only in several randomly
located clusters in an approximately uniformly spread set of
points D in R

d . For an isotropic process, this condition can be
checked by plotting ‖si − sj ‖ against 1

2 (σ
2(si ) + σ2(sj )) for all

pairs of points in D, looking for evidence of a change in the
conditional mean of 1

2 (σ
2(si ) + σ2(sj )) given ‖si − sj ‖. (We

note that small changes in the conditional mean for pairs of
points with ‖si −sj ‖ greater than the effective range of Z(s)
will have little effect on this bias term approximation.) Under
condition (7), the expectation in (6) simplifies to

E{γ̂Z (h)} ≈

⎧⎪⎨⎪⎩
γT (h) +

1
n

n∑
�=1

σ2(s� ), h �= 0,

0, h = 0.

(8)

Because condition (7) is so broadly applicable and will yield
low-variance estimates of the bias term in (6), we employ it
throughout our discussion, simulations, and data-analysis ap-
plication.

Equation (8) implies that γT (h) can be estimated using a
bias-adjusted version of γ̂Z (h), the empirical semivariogram
for Z(s). Further, the bias adjustment of γ̂Z(h) is the same
quantity for all values of h �= 0. Specifically,

γ̂∗
T (h) ≈

⎧⎪⎨⎪⎩
γ̂Z (h) − 1

n

n∑
�=1

σ2(s� ), h �= 0,

0, h = 0,

(9)

where the asterisk indicates the use of a bias-correction term
in formulating the estimate. Note that when σ2(s) = σ2 and
FK (as in Section 2.2) is used, γ̂Z(h) is similarly biased for
γT (h), but the stationarity implied by σ2(s) = σ2 allows for
a simple adjustment of the kriging equations via (5).

The development of the HFK predictor is the same regard-
less of whether the bias in γ̂Z(h) is adjusted separately for
each choice of h or if the bias adjustment is the same for all
h (using (9)). The value of the condition (7) and the implied
bias-adjusted estimated variogram for T (s) in (9) is that the
bias adjustment in (9) is simple and allows for more observa-
tions to estimate it, yielding a more stable prediction of γT (s)
than an estimate that requires a separate bias adjustment for
each chosen value of h.

In practice, γ̂∗
T (h) will be constructed from the fitted semi-

variogram for Z(s). Suppose, for example, that the semivar-
iogram model fitted to γ̂Z(h) is γ̂Z(h; θ), where θ contains
parameters defining the parametric model (e.g., exponential
or spherical). If γ̂Z (h; cZ , rZ , vZ ) has a nugget of cZ , range of
rZ , and partial sill of vZ , then an estimated semivariogram
model for T (s) is

γ̂∗
T (h; cT , rT , vT ) = γ̂Z

(
h; cZ − 1

n

n∑
�=1

σ2(s� ), rZ , vZ

)
.
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Figure 1. Comparison of γ̂Z(h) and γ̂∗
T (h) when the nugget of γZ (h) is cZ = 1.2, the partial sill is vZ = 0.8, the range is rZ =

5, and the mean measurement error variance for the observations in D is 1
n

∑n

i=1 σ2(si ) = 1.0. Thus, cT = 0.2, vT = vZ = 0.8,
and rT = rZ = 5.

Note that, in general, the range and partial sill for T (s) are
unaffected by the bias correction, so rT = rZ and vT = vZ .
Example semivariograms for Z(s) and T (s) are illustrated
in Figure 1. Note also that under model (1), cZ − 1

n

∑n

�=1
σ2(s� ) � 0, but the estimated nugget may occasionally be less
than the average measurement error variance due to sam-
pling error or semivariogram estimation error. When cZ −
1
n

∑n

�=1 σ2(s� ) < 0, the nugget for the semivariogram of T (s)
(denoted cT ) can be set to zero and the partial sill (vT ) set
to equal vZ + cZ − 1

n

∑n

�=1 σ2(s� ) so that the sill (sum of the
nugget plus partial sill) is still reduced by 1

n

∑n

�=1 σ2(s� ). Note
that the observed nugget for the estimated semivariogram of
the Z(s) process is the sum of the microscale variation associ-
ated with T (s) (see Cressie, 1993, Section 3.1) and the mean
measurement error variance associated with Z(s).

The predictors in the OK and FK settings are examples of
BLUPs, which are generally constructed using the covariances
among all pairs of observations (Z(si ), Z(sj )) and the covari-
ances between each observation and the process of interest
at s0 (either Z(s0) or T (s0)). In (5), the semivariogram-based
formula for the FK weights consists of an inverse of a matrix
multiplied by a column vector. Note that in the FK setting,
the (i, j) element of Γ̂Z is equal to

1
2
var{Z(si ) − Z(sj )} = γT (si − sj ) + I(i �=j )σ

2,

which is directly estimable using γ̂Z(si − sj ) because of the
stationarity of Z(s). In contrast, when following the standard
approach for obtaining a BLUP, the HFK predictor will not
be a simple function of γ̂Z(si − sj ) because of the nonstation-
arity of Z(s). Specifically, the HFK weights for the predictor

T̂HFK (s0) = λ′
HFKZ are found using:[

λHFK

mHFK

]
=

[
Γ̂

∗
Z 1

1′ 0

]−1 [
γ̂∗

Z,T (s0)

1

]
, (10)

where the (i, j) element of Γ̂
∗
Z is

1
2
v̂ar{Z(si ) − Z(sj )}

=

⎧⎨⎩
1
2
v̂ar{T (si ) − T (sj )} +

1
2
var{ε(si ) − ε(sj )}, si �= sj

0, si = sj

= γ̂∗
T (si − sj ) + I(i �=j )

σ2(si ) + σ2(sj )
2

,

the ith element of γ̂∗
Z,T (s0) is

1
2
v̂ar{Z(si ) − T (s0)} =

1
2
v̂ar{T (si ) − T (s0)} +

1
2
var{ε(si )}

= γ̂∗
T (si − s0) +

σ2(si )
2

,

and the indicator function IA equals 1 when condition A is
true, and equals 0 otherwise. A comparison of HFK with FK
and a demonstration that HFK reduces to FK in the case of
σ2(s) = σ2 is given in Web Appendix B.

The kriging variance for T̂HFK (s0) is

τ 2
HFK (s0) = λ′

HFK γ̂∗
Z,T (s0) + mHFK . (11)

When σ2(si ) = σ2 for all si , we can use an argument similar
to that used in Web Appendix A to show that (4), (A.2) in
Web Appendix A, and (11) are equivalent.

Web Appendix C presents the HFK predictors in terms of
covariograms instead of semivariograms.
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3. Variance-Stabilized HFK When σ2(si) Is
Correlated with T(si)

In many scenarios, the location-specific measurement error
variance σ2(si ) is itself a function of T (si ). This is problem-
atic because the development of the estimate of γT (h) in (9)
and the kriging equations in (10) require that T (s) and ε(s)
be uncorrelated. If σ2(si ) is a function of T (s), then in gen-
eral, cor{T (s), ε(s)} �= 0 and the approach for constructing
the HFK predictor will be flawed. Specifically, a relationship
between σ2(s) and T (s) can lead to bias in T̂HFK (s0) because
HFK downweights the influence of the high-variance obser-
vations in the linear combination T̂HFK (s0) = λ′

HFKZ. For ex-
ample, there are many common scenarios in environmental
monitoring where the unobservable quantity of interest T (s)
is positively correlated with σ2(s). In the area of receptor
modeling of air-quality data, ambient measures of particu-
late matter abundances are generally associated with avail-
able measurement error variances that tend to increase with
the measured abundance (Lingwall, Christensen, and Reese,
2008). The HFK predictor for such data will exhibit down-
ward bias, particularly among the regions of the observation
space where T (s) and σ2(s) are high.

When σ2(s) is correlated with T (s), we consider the use
of variance-stabilizing transformations proposed by Box and
Cox (1964) and developed by many other authors including
Hocking (2003; Section 3.3), Box, Hunter, and Hunter (1978;
Section 7.8), and Kuehl (1994, Section 4.6). Suppose that the
model relating σ2(s) to Z(s) is

σ2(si ) = α2(Z(si ))2β (12)

so that

log σ(si ) = log α + β log Z(si ).

The coefficients α̂ and β̂ can be obtained via regression. Then,
following Hocking (2003) and Kuehl (1994), define the trans-
formed measurement Z̃(si ) using

Z̃(si ) = f (Z(si )) =
1

α̂(1 − β̂)
(Z(si ))1−β̂ (13)

and define

σ̃2(si ) = var{Z̃(si )} = σ2(si ) × [f ′(Z(si ))]2

= σ2(si ) ×
[ 1
α̂

(Z(si ))−β̂
]2

. (14)

Note that if model (12) is valid, the correlation between Z̃(s)
and σ̃2(s) will be roughly zero.

Thus, the decomposition of signal and measurement error
defined in our original data model (1) is best applied to the
transformed data Z̃(s), s ∈ D, where components T̃ (s) and

ε̃(s) are approximately uncorrelated. The estimator ˆ̃T (s0) is
found by applying HFK to Z̃(si ) and σ̃2(si ) in (13) and (14).
Define m̃HFK and τ̃ 2(s0) to be the Lagrange multiplier and
estimated kriging variance obtained from (10) and (11), re-
spectively.

To transform back to the original scale, we define

g(Z̃(s)) = f−1(Z̃(s)) =
(
α̂(1 − β̂)Z̃(s)

) 1
1−β̂ ,

g′(Z̃(s)) = α̂
(
α̂(1 − β̂)Z̃(s)

) β̂

1−β̂ ,

and

g′′(Z̃(s)) = α̂2β̂
(
α̂(1 − β̂)Z̃(s)

) 2β̂ −1
1−β̂ .

Let ĈZ (h; cZ , rZ , vZ ) be the covariogram model fitted to
ĈZ (h), with a nugget of cZ , range of rZ , and partial sill of
vZ . Then an estimated covariogram model for T (s) is

Ĉ∗
T (h; cT , rT , vT ) = ĈZ

(
h; cZ − 1

n

n∑
�=1

σ2(s� ), rZ , vZ

)
,

and Ĉ∗
Z is an n × n matrix with (i, j) element equal to

Ĉ∗
T (si − sj ) + I(i=j )σ

2(si ). (See Web Appendix C for addi-
tional discussion of HFK using covariograms.) Then, using
trans-Gaussian kriging (Cressie, 1993, Section 3.2.2), we de-
fine the VHFK predictor as

T̂VHFK (s0) = g
(

ˆ̃T (s0)
)

+ g′′(μ̂T̃ ) ×
(
τ̃ 2(s0)/2 − m̃HFK

)
,

(15)

where μ̂T̃ = 1′C̃∗−1
Z Z̃/(1′C̃∗−1

Z 1). The second term in (15) is an
adjustment that reduces the bias of the predictor. Schaben-
berger and Gotway (2005; Section 5.6.2) discuss scenarios in
which the adjustment may not be needed, drawing upon the
discussion of Zimmerman and Cressie (1992). As an alterna-
tive to (15), we define the simpler variance-stabilized predictor

T̈VHFK (s0) = g
(

ˆ̃T (s0)
)

. (16)

Applying the results of Cressie (1993, Section 3.2.2) to the
VHFK predictor, we obtain the estimated kriging variance for
(15) and (16)

τ̂ 2
VHFK (s0) = (g′(μ̂T̃ ))2 × τ̃ 2(s0), (17)

where g′(·), μ̂T̃ , and τ̃ 2(s0) are defined as in (15).

4. Simulation Studies
We use a computer simulation experiment to evaluate the per-
formance of HFK in the scenarios where (1) σ2(si ) is uncor-
related with T (si ) (using the HFK predictor), and (2) σ2(si )
is correlated with T (si ) (using the variance-stabilized HFK or
VHFK predictor). In all scenarios, we will compare HFK or
VHFK (discussed in Sections 2.3 and 3) with both OK and FK
(discussed in Sections 2.1 and 2.2). Because FK is not directly
applicable to the heterogeneous measurement error variance
scenario, when calculating FK predictions we use the mean of
the assumed measurement error variances as the “common”
measurement error variance. (Note that this mean measure-
ment error variance is equivalent to 1

n

∑n

�=1 σ2(s� ), which is
used as the bias adjustment in (9).) Although this yields only
an approximation of the “common” measurement error vari-
ance, it allows us to compare our new predictors against an-
other method that accounts for the presence of measurement
error. For the case of σ2(si ) correlated with T (si ), we use the
variance-stabilizing adjustment of HFK (VHFK) discussed in
Section 3. When generating spatial processes and when fitting
semivariograms, we use isotropic models, but the isotropy as-
sumption is not necessary for any of the discussed predictors.
When using HFK or VHFK, we use the simple bias-adjusted
semivariogram estimator γ̂∗

T (h) given in (9) because condition
(7) is satisfied in the simulations.
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We note here that although FK can be used in the het-
erogeneous measurement error variance scenario by using the
mean of the measurement error process σ2(s) as an estimate
of the common measurement error variance, there are clear
hazards in taking such an approach. First, as we show below,
the HFK/VHFK approach has much smaller MSPE in cases
where the location-to-location variation in measurement er-
ror variance is large relative to the average measurement error
variance. Second, the use of FK in the heterogeneous measure-
ment error variance scenario will yield prediction variances
that are incorrect—too small in the locations with above-
average measurement error variances and too large in the lo-
cations with below-average measurement error variances.

4.1 σ2(si ) Is Uncorrelated with T (si )
In this simulation, we generate data from (1) with D com-
prising 400 observations on a 20 × 20 grid. The signal T (s) is
generated from a normal distribution with the spatial corre-
lation governed by an isotropic spherical semivariogram with
nugget of 0.2, partial sill of 0.8, and range of 5 units. Various
values for the relative size of the nugget were explored, with
little effect on outcomes. The values of σ2(s) were independent
and identically distributed draws from a lognormal distribu-
tion with mean of μσ 2 and coefficient of variation (CV) of
κ. Thus, κ controls the variability of the measurement error
variances across the region of interest, with κ = 0.5 denot-
ing that the standard deviation of the values of σ2(s) is 50%
of the value of the mean measurement error variance μσ 2 .
Figure 1 illustrates examples of the semivariograms for Z(s)
and T (s) that are used in this simulation, with μσ 2 = 1 and
κ = 1.

We expect that as κ increases, the advantage of T̂HFK (s)
over T̂FK (s) should generally increase. The process of gener-
ating from a lognormal with specified mean and variance is
described in detail in Lingwall and Christensen (2007). We
consider drawing the value of ε(s) from a normal distribu-
tion with mean of zero and variance of σ2(s), and from a
right-skewed distribution with mean of zero and variance of
σ2(s). The right-skewed distribution is a “shifted lognormal”
distribution obtained by drawing values from a lognormal dis-
tribution with a mean of 1 and variance of σ2(s), and then
subtracting 1 from each value. The skewed distribution is eval-
uated to identify whether or not a small number of locations
with very large measurement errors affect the relative perfor-
mance of the estimators.

Instead of using the true measurement error variance pro-
cess σ2(s) when predicting T (s), we incorporate the additional
real-world complication of errors in the “known” measure-
ment error variances. That is, we create a set of assumed
measurement error variances σ̆2(s), s ∈ D, where σ̆2(si ) is a
draw from a lognormal distribution with mean of σ2(si ) and
CV of φ. Thus the quality of our assumed measurement error
variances as surrogates for the true values of σ2(s) is governed
by φ, where φ = 0.5 implies that the assumed measurement
error variances tend to be off by roughly 50% of the true
value. We expect that as φ increases, the advantage of T̂HFK (s)
over T̂FK (s) should decrease, because site-specific information
about measurement error variance will be of less value.

When obtaining estimates of the semivariograms for cal-
culating the predictions for T (s), we assume the correct

Table 1
Simulation results when σ2(si ) is uncorrelated with T (si ), and
ε(si ) is drawn from a distribution with variance σ2(si ). Table
values are the MSPE values for T̂HFK (s) using (10) relative to

the MSPE for T̂FK (s) using (5). Simulation parameters
include: μσ 2 (the average size of measurement variances),

κ (governing the variability of measurement error variances
across sites), and φ (governing the variability of σ̆2(s) as an

estimate of the true measurement error variance σ2(s)).

κ

φ μσ 2 0.1 0.25 0.5 1 1.5

0.1 0.1 1.00 0.99 0.97 0.90 0.84
0.1 0.25 1.00 0.99 0.96 0.86 0.78
0.1 0.5 1.00 0.99 0.95 0.83 0.74
0.1 1 1.00 0.98 0.94 0.83 0.71
0.1 1.5 1.00 0.99 0.92 0.81 0.76

0.5 0.1 1.02 1.02 1.00 0.93 0.87
0.5 0.25 1.04 1.03 0.99 0.87 0.81
0.5 0.5 1.05 1.04 0.99 0.86 0.77
0.5 1 1.06 1.02 0.99 0.87 0.76
0.5 1.5 1.06 1.05 0.99 0.87 0.78

(isotropic spherical) parametric form, but then estimate the
semivariogram parameters using the weighted least squares
approach of Cressie (1985) as applied to the simulated data
set. For each of the 100 scenarios considered, 200 data sets
were simulated and predictions of T (s) were obtained using
each method. Because T̂HFK (s) and T̂FK (s) were each vastly
superior to T̂OK (s) when the average measurement error (μσ 2 )
is nonzero, in this simulation we focus only on T̂HFK (s) and
T̂FK (s), where the HFK predictor uses Z(si ) and σ̆2(si ), and
the FK predictor uses Z(si ) and 1

n

∑n

�=1 σ̆2(s� ) as the estimate
of the “common” measurement error variance.

Because the results obtained from the simulations with ε(s)
drawn from a normal distribution and from a shifted lognor-
mal distribution are nearly identical, we combine the results
from the two simulations in one discussion. Table 1 gives the
MSPE of the HFK prediction of T (s) (for all s ∈ D) divided by
the MSPE of the FK prediction. When the available measure-
ment error variances σ̆2(si ) are reasonably accurate (φ = 0.1)
and there is some variability in the measurement error vari-
ances across the spatial field (κ � 0.25), HFK predicts T (s)
with a MSPE that is smaller than the MSPE for FK. We see
that when the measurement error variances are uncorrelated
with the process of interest, using HFK instead of FK reduces
the MSPE by as much as 32%. For the values considered in
this simulation, as the measurement error’s mean (μσ 2 ) and
CV (φ) increases, the HFK predictor generally becomes more
superior. Note that because the sill of T (s) was equal to 1,
one can use the values of μσ 2 in the simulations to identify
ranges of values for the ratio

μσ 2

var{T (s)} ,

where one would expect to find HFK superior to FK. When
σ2(si ) is uncorrelated with T (si ) and the available measure-
ment error variances σ̆2(si ) are reasonably accurate (φ = 0.1),
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Table 2
Simulation results when σ2(si ) is correlated with T (si ). Table
values are the MSPE values for T̈VHFK (s) using (16) relative
to the MSPE for T̂FK (s) using (5). Simulation parameters
include: μσ 2 (the average size of measurement variances),

κ (governing the variability of measurement error variances
across sites), and φ (governing the variability of σ̆2(s) as an

estimate of the true measurement error variance σ2(s)).

κ

φ μσ 2 0.1 0.25 0.5 1 1.5

0.1 0.1 1.00 1.00 1.00 0.99 0.97
0.1 0.25 0.99 1.00 0.99 0.97 0.94
0.1 0.5 0.99 0.99 0.98 0.94 0.90
0.1 1 0.99 0.98 0.96 0.92 0.88
0.1 1.5 1.00 0.99 0.96 0.91 0.89

0.5 0.1 1.02 1.02 1.02 1.01 0.99
0.5 0.25 1.03 1.03 1.03 1.00 0.96
0.5 0.5 1.04 1.04 1.03 0.98 0.94
0.5 1 1.06 1.04 1.01 0.95 0.90
0.5 1.5 1.05 1.03 0.98 0.90 0.90

we can recommend HFK over FK without reservation. If the
available measurement error variances are only approximate
(φ = 0.5), we can only recommend HFK over FK when the
CV of the σ2(s) process is at least 0.5.

Additional small-scale simulations were run using spatial
samples D comprising as few as 25 observations (on a 5 × 5
grid) with little or no changes in the MSPE values for HFK
relative to FK. We also note that although our simulations
are based on gridded data, the methods discussed here are
not affected when analyzing nongridded data.

4.2 σ2(si ) Is Correlated with T (si )
Simulations for the scenario when σ2(si ) is correlated with
T (si ) were carried out in a manner similar to Section 4.1 with
the exception of the choice of the value for σ2(si ). In this sec-
tion, we summarize the simulation results and compare the
VHFK predictor (16) with the FK predictor (5). The motiva-
tion and methodology for these simulations are discussed in
detail in Web Appendix D.

Table 2 gives results for this simulation in a format identical
to that of Table 1. Comparing to Table 1, note that when
σ2(si ) is correlated with T (si ), the improvement of VHFK
over FK is less pronounced, but VHFK is still superior in
most cases. When the available measurement error variances
are only approximate (φ = 0.5), the set of scenarios where
VHFK improves on FK is limited to the cases where κ (the
CV of σ2(s)) is greater than 0.5. The process for constructing
the VHFK predictor (described in Section 3) is complicated
by the additional model (12) that must be fitted. Hence, the
small differences between values in the σ2(s) process when κ �
0.5 does not warrant the adoption of the VHFK predictor with
its increased potential for estimation error. However, VHFK
is superior to FK in most cases. An advantage of VHFK is
that one can reasonably predict when it will be superior to
FK. The VHFK predictor is the preferred choice whenever the

σ2(s) process is known with reasonable precision and/or the
σ2(s) process has substantial location-to-location variability
(i.e, the CV of σ2(s) is greater than 0.5).

Finally, we note that in their simulation study, Kleijnen and
Van Beers (2005) concluded that OK is “not very sensitive
to variance heterogeneity.” However, their conclusions were
based on OK’s accuracy relative to several competing meth-
ods that use repeated measurements of Z(s) at each location.
Our study employs a newly developed BLUP approach, which
assumes that the measurement error variance at each loca-
tion is known. In contrast to Kleijnen and Van Beers (2005),
we conclude that notable improvement can be realized using
HFK/VHFK, with MSPE values in our simulations reduced
by as much as 64% compared with OK and as much as 32%
compared with FK.

5. Smoothing of Climate Parameter Estimates
To illustrate HFK/VHFK, we consider a sample of out-
put from an analysis of North American Region Cli-
mate Change Assessment Program (NARCCAP) data
(http://www.narccap.ucar.edu/). In this example, we focus
on mean summer temperatures (1980–2000) from the Hudson
Strait in northern Canada, which connects the Hudson Bay
on the west with the Labrador Sea on the east (see panel (a) of
Figure 2). Climate change in the Hudson Strait (Houser and
Gough, 2003) and throughout the Arctic region (Moritz, Bitz,
and Steig, 2002) is of increasing interest to climate science
researchers, but Arctic climate can be complex and difficult
to model, particularly near water/land boundaries. Thus, al-
though the NARCCAP models tend to yield similar pictures
of North American climate averaged over decades, they are
not in as strong agreement for mean summer temperatures in
the Hudson Strait.

Christensen and Sain (2011) consider factor analysis mod-
els for multimodel ensemble data. They provide descriptions
of climate processes in common to the ensemble and measures
of commonality (dependence on common factors) for each cli-
mate model. The data Z(s) for the illustration given here is
the commonality process associated with one of the NAR-
CCAP models—the Pennsylvania State University/National
Center for Atmospheric Research (PSU/NCAR) mesoscale
model (or “MM5I”). See Mearns et al. (2009) for a descrip-
tion of NARCCAP. This process is parameterized such that
Z(s) values greater (less) than 1 indicate that MM5I has a
relationship with the common climate factor that is stronger
(weaker) than average when compared with the other models.
Associated with each estimated commonality Z(s) is a stan-
dard error σ(s), which we will treat as a measurement error
standard deviation. Our purpose is to use model (1) to obtain
an estimate of the error-filtered model-commonality process
T (s).

Because there is a reasonably strong positive association
between Z(s) and σ(s) (with a linear relationship between
log Z(s) and log σ(s) and a correlation of 0.64), the stan-
dard HFK predictor will be biased (see Section 3), and the
VHFK approach is most appropriate. The use of VHFK seems
particularly promising because the data scenario implied by
the Z(s) and σ2(s) processes falls within the collection of cases
where VHFK was recommended in Section 4.2. The mean of
the measurement error variances for this region is 0.31 and
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the sample variance of Z(s) is 0.56. Then, the logic behind
(8) and Figure 1 implies that the variance of T (s) should be
approximately 0.25 (0.56 − 0.31). Thus, the ratio of μσ 2 to
var {T(s)} is roughly 1.25. The CV of the given σ2(s) process
(formed using the squared standard error of the estimated
commonality process at each location) can be calculated di-
rectly and is approximately 1 for these data. Thus, these data
scenarios would be similar to a scenario in the simulations in
Section 4.2 with μσ 2 = 1.25 and κ = 1. We see from Table 2
that this is clearly a case where VHFK should be superior.
Because the condition (7) is verified (see Web Appendix E),
we use the bias adjustment in (9).

Based on the simulation studies in Section 4, we ex-
pect FK to be the best alternative to VHFK. In comparing
VHFK with FK, we are particularly interested in locations
where T̈VHFK (s) from (16) is significantly different from T̂FK (s)
from (5). Statistical significance is assessed with the test
statistic

tdiff(s0) =
T̈VHFK (s0) − T̂FK (s0)√

τ̂ 2
diff (s0)

∼̇ N (0, 1), (18)

which is described in Web Appendix F.
Figure 2 compares the raw data Z(s) with the FK, HFK,

and the VHFK predictions. Note that because of the cor-
relation between Z(s) and σ(s), we see that—compared to
VHFK—HFK dramatically oversmooths the surface, partic-
ularly in the locations with high values of Z(s) and σ(s).
Figure 3 plots the difference between the variance-stabilized
VHFK prediction and the FK prediction. Locations outlined
with a black box are those for which the VHFK prediction is
significantly different from the FK prediction at level α = 0.10
(i.e., |tdiff(s)| > 1.645). Locations significant at the α = 0.05
level are cross-hatched. Note that the areas where the predic-
tors deviate most from each other can be identified by exam-
ining the Z(s) and σ(s) processes plotted in panels (b) and
(c) of Figure 2. The locations marked with an “A” in Figure 3
have both a very low value of Z(s) and a very low standard er-
ror. The FK predictor smooths these locations upward toward
the mean more than the VHFK predictor because FK does
not account for these measurements’ high reliability. The area
surrounding location “B” in Figure 3 is characterized by a
mix of high and low Z(s) values, with the high values associ-
ated with large standard errors. The FK predictor implicitly
assumes equal reliability for these measurements and effec-
tively averages the high and low values for Z(s) in this area.
In contrast, the VHFK predictor gives more weight to the
low-standard-error locations, yielding a lower predicted value
for this area. The location marked with “C” in Figure 3 has
a higher Z(s) value than its neighboring locations, but is ac-
companied by a relatively low standard error, ensuring that
the prediction at this location is not overly smoothed down-
ward by the VHFK predictor. The kriging variances associ-
ated with the FK and VHFK predictions are relatively similar,
with VHFK generally having smaller prediction variances in
this example. Regardless of their relative sizes, we know that
the heterogeneous measurement error variances render the
estimated FK kriging variances invalid.

The practical importance of VHFK in this setting is that
it accentuates the regions where model-commonality is low or

high, giving climate modelers specific insight about geographi-
cal locations where climate models may be inadequately incor-
porating important geographical or climatological variables
(e.g., sea ice or water/land boundaries). Without proper spa-
tial prediction in the heterogeneous variance setting, there is
a tendency to either understate or overstate the impact of
local parameter estimation errors in the assessment of the cli-
mate model ensemble’s performance. In general, the VHFK
predictor provides an improved picture of the measurement-
error-filtered process by exploiting the given measurement er-
ror variance information and yielding a more precise picture
of which locations are anomalous or interesting.

6. Discussion and Conclusion
In this article, we present a new approach for kriging in the
presence of heterogeneous (site-specific) measurement error
variances. Although the predictor itself is based on a BLUP
of the same structure as other kriging predictors, the real
challenge in forming the BLUP is the nonstationarity of the
process, which substantially complicates the estimation of
the semivariogram/covariance function required to construct
the predictor. We present a novel but fairly simple method
for estimating the semivariogram of the measurement-error-
free spatial process, which is based on a bias adjustment of
the classical semivariogram formula, and we construct kriging
equations that properly use this semivariogram along with the
known measurement error variances. The HFK predictor in
(10) reduces to the standard FK predictor in (5) when σ2(s)
is the same value for all s.

For use with processes where each site’s measurement error
variance is a function of the process of interest, we recommend
an approach which uses a variance-stabilizing transformation.
VHFK uses the notion of trans-Gaussian kriging to form a
predictor.

Using simulation, we compare the HFK and VHFK predic-
tors with the standard FK predictor (where the mean mea-
surement error variance is used for the “common” measure-
ment error variance for FK). When the measurement error
variances are uncorrelated with the process of interest, using
HFK instead of FK reduces the MSPE by as much as 32%.
The only case where HFK would be inadvisable is when the
measurement error variances are themselves measured with
substantial error and the measurement error variance process
σ2(s) has a CV � 0.25. That is, HFK is preferable when mea-
surement error variances can be identified with reasonable
accuracy and/or measurement error variances are noticeably
heterogeneous across the region of interest. When site-specific
measurement error variances are a function of the site-specific
measured values, VHFK is also an improvement over FK ex-
cept when the measurement error variances are measured with
substantial error and the measurement error variance process
σ2(s) has a CV � 0.5.

In our example using climate model output, we find that
VHFK provides an improved predictor of the error-filtered
model-commonality process of interest. Locations with high
or low values of σ2(s) are appropriately down- or upweighted
in the prediction of the process of interest, yielding a realis-
tically smooth picture of the specific locations in which the
MM5I regional climate model is in greatest agreement with
the ensemble’s common underlying climate factor.
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black boxes (α = 0.10) and cross-hatching (α = 0.05). This figure appears color in the electronic version of this article.

7. Supplementary Materials
Web Appendices referenced in Sections 2.2, 2.3, 3, 4.2, and 5
are available under the Paper Information link at the Biomet-
rics website http://www.biometrics.tibs.org/.
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