
Accessible Web Mapping Apps
Kelly Hutchins
Tao Zhang

What is accessibility?

• Make content usable by as many people as possible
• About 15% of world population lives with some form of disability: 1 billion people
• In the US, 1 in 5 adults has a disability
• Disabilities could be temporary or situational

Why is accessibility important?

• People with disabilities deserve equal rights
• The ADA and Section 508
• Accessible interface is about good design and coding practice
• Good accessibility is good user experience

What are we doing?

• Better knowledge sharing
• Review products internally for compliance
• Working accessibility into new features

WCAG

Web Content
Accessibility Guidelines

Overview of WCAG 2.0

What we will cover today

• Focus and keyboard
• Color
• Information and relationships
• Testing
• Accessible map

Focus and keyboard

Focus

• WCAG 2.4.7: Any keyboard operable user interface has a mode of operation where the
keyboard focus indicator is visible.

• Interactive HTML elements should have clear focus
• Don’t set outline: 0px for :focus
• For links use text-decoration: underline for :hover &
:focus, or make it more decorative

https://www.w3.org/TR/UNDERSTANDING-WCAG20/navigation-mechanisms-focus-visible.html

ArcGIS API for JavaScript

Classes with focus method:
• MapView and SceneView
• Popup

• Search

Tab order

• WCAG 1.3.2: Navigation order, as determined by DOM structure, should be logical and
intuitive.

• Be careful changing visual position of elements on screen
using CSS

• Avoid jumping around tab order

https://www.w3.org/TR/UNDERSTANDING-WCAG20/content-structure-separation-sequence.html

Tab order

tabindex=“0” Let natural DOM structure determine tab order

tabindex=“-1” If need to programmatically move focus by
calling focus()

tabindex=“4” Anti-pattern

Keyboard

• WCAG 2.1.1: Keyboard users should be able to use all page functionalities using keyboard
only.

• Native interactive elements like <a>, <button>, and <input> receive keyboard actions
• Support appropriate keystrokes as if it were native element (e.g., Space & Enter on button)

https://www.w3.org/TR/UNDERSTANDING-WCAG20/keyboard-operation-keyboard-operable.html

Map navigation

Action Behavior

Arrow keys Nudge the view to the left, right, up, or down

N Adjust the view to point north

A Rotate the view counter clockwise

D Rotate the view clockwise

+ Incrementally zoom in

- Incrementally zoom out

https://developers.arcgis.com/javascript/latest/api-reference/esri-views-MapView.html#navigation

SceneView navigation

Action Behavior

Arrow keys Nudge the scene to the left, right, up, or down

P Move the camera to look perpendicular

N Adjust the scene to point north

J Move down closer to the view

U Move up, higher from the view

https://developers.arcgis.com/javascript/latest/api-reference/esri-views-SceneView.html#navigation

Keyboard example

<div class="button dark” role="button” tabindex="0” id="buttonId">
Search

</div>

document.getElementById("buttonId")
.addEventListener("keyup",function(event) {

event.preventDefault();
if((event.keyCode === 13)||(event.keyCode === 32)) {

// respond to Enter/Space keys;
}

});

No keyboard trap

• WCAG 2.1.2: Content does not “trap” keyboard focus within subsections.
• Keyboard focus stay inside modal dialog until dialog dismissed.
• Restore keyboard focus to previously focused element after dialog dismissed.

http://www.w3.org/TR/UNDERSTANDING-WCAG20/keyboard-operation-trapping.html

Keyboard trap example

https://www.w3.org/TR/wai-aria-practices/examples/dialog-modal/dialog.html

Test focus and keyboard

• Tab through page to verify all interactive elements have focus
• Visual focus order matches intended interaction order
• Interact with all controls, links, and menus using only keyboard
• No keyboard trap except for modals
• Off-screen content like responsive navigation should not receive focus when invisible

Color contrast

Use of color

• WCAG 1.4.1: Color is not used as the only visual means of conveying information,
indicating an action, prompting a response, or distinguishing a visual element.

http://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-without-color.html

Minimum contrast

• WCAG 1.4.3: The visual presentation of text and images of text has a contrast ratio of at
least 4.5:1, except for large text (ratio of at least 3:1), incidental text, or logotype.

http://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-contrast.html

Test color

• Look for content differentiated by color only
• Run an automated test tool: aXe
• Use a contrast ratio calculator

https://chrome.google.com/webstore/detail/axe/lhdoppojpmngadmnindnejefpokejbdd
http://leaverou.github.io/contrast-ratio/

Info and relationships

Clear semantics

• WCAG 1.3.1: Content should have good semantic structure.
• Assistive Technologies (AT) rely on semantic code to drive their behavior.
• Information architecture is important.
• Non-sighted users should be able to infer the same information as sighted users without

depending on colors, shape, or typography for context.

http://www.w3.org/TR/UNDERSTANDING-WCAG20/content-structure-separation-programmatic.html

Semantics example

<li tabindex="0” class="checkbox” checked>
Show premium content

• Sighted users see a checkbox as a result of CSS class
checkbox

• AT users will not know this is meant to be a checkbox

<li tabindex="0” class="checkbox”
role="checkbox” checked aria-checked="true">

Show premium content

• The checkbox role is used for checkable interactive
controls.

• It’s also required to have aria-checked attribute to
expose checkbox state to AT users.

WAI-ARIA

• Specification for increasing accessibility of custom elements.
• Allows developers to modify and augment standard DOM to accessibility tree for AT.

https://developers.google.com/web/fundamentals/accessibility/semantics-aria/

WAI-ARIA Authoring Practices

https://www.w3.org/TR/wai-aria-practices-1.1/

Bypass blocks

• WCAG 2.4.1: Pages should have mechanisms like Skip-Navigation and WAI ARIA
landmark roles for users to jump to main content or a particular content area.

http://www.w3.org/TR/UNDERSTANDING-WCAG20/navigation-mechanisms-skip.html
http://webaim.org/techniques/aria/
http://webaim.org/techniques/aria/

Bypass blocks example

Labels or instructions

• WCAG 3.3.2: Labels or instructions are provided when content requires user input.
• Labels should be associated with form inputs.

http://www.w3.org/TR/UNDERSTANDING-WCAG20/minimize-error-cues.html

Label examples

<label>
Email
<input type="text” placeholder="name@example.com">

</label>

Associate label implicitly

<label for="firstname">First name:</label>
<input type="text” name="firstname” id="firstname”>

Associate label explicitly

<input type="text” name="search” aria-label="Search">
<button type="submit">Search</button>

Use aria-label

Live region

• Ask screen reader to announce dynamic
changes

• Roles for various contexts

Test info and relationships

• Run automated test
• Use screen reader to tab through page
• Look for Skip-Navigation and landmarks
• Click on label to see if associated form input is focused
• Use screen reader to fill in forms

Testing

The process

Automated test

Keyboard test

Screen reader test

aXe
• Tests rendered browser DOM
• Less false positives
• Accessible
• Good documentation

https://www.deque.com/products/axe/

Keyboard navigation

←
↑

→
↓

tab shift tab Move keyboard focus

enter Click links

enter space Click buttons

Menus and some form
controls

Screen reader

OS Screen reader Browser

MacOS VoiceOver Safari

Windows NVDA Firefox

Windows JAWS IE/Edge

Recommended combinations:

https://www.apple.com/accessibility/mac/vision/
https://www.nvaccess.org/
http://www.freedomscientific.com/Products/Blindness/JAWS

Screen reader

Turn on Turn off Modifier key

VoiceOver Command + F5 Command + F5 Control + Option

NVDA Control + Alt + N NVDA + Q Numpad Insert

JAWS Control + Alt + J Insert + F4 Numpad Insert

VoiceOver commands

VO + right/left arrow
Control
VO + space
VO + u

Read next/previous item
Stop reading
Click link, button, form controls
Open rotor

Accessible map

https://github.com/kellyhutchins/a11y-map

Schedule
Hands-on Workshops

Thursday, March 8
9:00 – 10:00 AM
DIY Accessibility
Mesquite B

1:00 – 2:00 PM
ArcGIS Runtime: Building Great
User Experience
Smoketree A-E

2:30 – 3:30 PM
Collaborative Brainstorming
Mesquite G-H

4:00 – 5:00 PM
Customizing the ArcGIS API for
JavaScript Widgets
Primrose A

Tuesday, March 6
1:00 – 2:00 PM
Introducing UX to your GIS Org
Mesquite B

4:00 – 5:00 PM
DIY Usability Testing
Mesquite C

Friday, March 9
8:30 – 9:30 AM
Accessible Web Mapping Apps

10:00 – 11:00 AM
DIY Usability Testing
Smoketree A-E

Please Take Our Survey!

Download the Esri Events app
and find your event

Select the session you
attended

Scroll down to the
“Feedback” section

Complete Answers,
add a Comment,

and Select “Submit”

